cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A070149 Areas of integer Heronian triangles [A070080(A070142(n)), A070081(A070142(n)), A070082(A070142(n))].

Original entry on oeis.org

6, 12, 12, 24, 30, 24, 48, 36, 54, 48, 60, 60, 42, 84, 66, 84, 96, 108, 60, 120, 36, 90, 126, 108, 84, 60, 120, 150, 72, 96, 168, 120, 192, 132, 204, 210, 210, 84, 144, 216, 192, 240, 114, 156, 180, 120, 240, 300, 168, 210, 168
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			A070142(2)=39: [A070080(39), A070081(39), A070082(39)] = [5,5,6], area^2 = s*(s-5)*(s-5)*(s-6) with s=A070083(39)/2=(5+5+6)/2=8, area^2=8*3*3*2=16*9 is an integer square, therefore a(2)=A070086(39)=area=4*3=12.
		

Crossrefs

Programs

  • Mathematica
    m = 500 (* max perimeter *);
    sides[per_] := Select[Reverse /@ IntegerPartitions[per, {3}, Range[ Ceiling[per/2]]], #[[1]] < per/2 && #[[2]] < per/2 && #[[3]] < per/2 &];
    triangles = DeleteCases[Table[sides[per], {per, 3, m}], {}] // Flatten[#, 1]& // SortBy[Total[#] m^3 + #[[1]] m^2 + #[[2]] m + #[[1]] &];
    area[{a_, b_, c_}] := With[{p = (a+b+c)/2}, Sqrt[p(p-a)(p-b)(p-c)]];
    Select[area /@ triangles, IntegerQ] (* Jean-François Alcover, Oct 12 2021 *)

Formula

a(n) = A070086(A070142(n)).

A070086 Areas of integer triangles [A070080(n), A070081(n), A070082(n)], rounded values.

Original entry on oeis.org

0, 1, 2, 1, 2, 3, 2, 3, 4, 4, 4, 2, 4, 4, 6, 5, 6, 7, 3, 5, 5, 7, 8, 6, 7, 8, 9, 3, 6, 6, 9, 7, 10, 11, 7, 9, 10, 11, 12, 4, 6, 8, 10, 8, 12, 12, 14, 8, 10, 12, 13, 12, 15, 16, 4, 7, 9, 12, 10, 14, 10, 15, 16, 17, 9, 12, 13, 15, 14, 17, 18, 19, 5, 8, 10
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

Triangles [A070080(A070142(n)), A070081(A070142(n)), A070082(A070142(n))] have integer areas = a(A070142(k)) = A070149(k).

Examples

			[A070080(25), A070081(25), A070082(25)] = [3,5,6] and s = A070083(25)/2 = (3+5+6)/2 = 7: a(25) = sqrt(s*(s-3)*(s-5)*(s-6)) = sqrt(7*(7-3)*(7-5)*(7-6)) = sqrt(7*4*2*1) = sqrt(56) = 7.48331, rounded = 7.
		

Crossrefs

The sides are given by A070080, A070081, A070082.
See A135622 for values signifying the precise area and further crossrefs.

Programs

  • Mathematica
    m = 50; (* max perimeter *)
    sides[per_] := Select[Reverse /@ IntegerPartitions[per, {3}, Range[ Ceiling[per/2]]], #[[1]] < per/2 && #[[2]] < per/2 && #[[3]] < per/2 &];
    triangles = DeleteCases[Table[sides[per], {per, 3, m}], {}] // Flatten[#, 1]& // SortBy[Total[#] m^3 + #[[1]] m^2 + #[[2]] m + #[[1]]&];
    area[{a_, b_, c_}] := With[{p = (a+b+c)/2}, Sqrt[p(p-a)(p-b)(p-c)] // Round];
    area /@ triangles (* Jean-François Alcover, Oct 03 2021 *)

Formula

a(n) = sqrt(s*(s-u)*(s-v)*(s-w)), where u=A070080(n), v=A070081(n), w=A070082(n) and s = A070083(n)/2 = (u+v+w)/2.

A070109 Number of right integer triangles with perimeter n and relatively prime side lengths.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

Right integer triangles have integer areas: see A070142, A051516.
a(n) is nonzero iff n is in A024364.

Examples

			For n=30 there are A005044(30) = 19 integer triangles; only one is right: 5+12+13 = 30, 5^2+12^2 = 13^2; therefore a(30) = 1.
		

Crossrefs

Programs

  • Mathematica
    unitaryDivisors[n_] := Cases[Divisors[n], d_ /; GCD[d, n/d] == 1];
    A078926[n_] := Count[unitaryDivisors[n], d_ /; OddQ[d] && Sqrt[n] < d < Sqrt[2n]];
    a[n_] := If[EvenQ[n], A078926[n/2], 0];
    Table[a[n], {n, 1, 1716}] (* Jean-François Alcover, Oct 04 2021 *)

Formula

a(n) = A078926(n/2) if n is even; a(n)=0 if n is odd.
a(n) = A051493(n) - A070094(n) - A070102(n).
a(n) <= A024155(n).

Extensions

Secondary offset added by Antti Karttunen, Oct 07 2017

A070136 Numbers m such that [A070080(m), A070081(m), A070082(m)] is a right integer triangle.

Original entry on oeis.org

17, 116, 212, 370, 493, 850, 1297, 1599, 1629, 2574, 2778, 3751, 4298, 4370, 5251, 5286, 6476, 9169, 10066, 12398, 12441, 12520, 14414, 16365, 16602, 19831, 21231, 21486, 24060, 26125, 27245, 29230, 33625, 33658
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

Right integer triangles have integer areas: see A070142.

Examples

			116 is a term: [A070080(116), A070081(116), A070082(116)]=[6,8,10], A070085(116)=6^2+8^2-10^2=36+64-100=0.
212 is a term: [A070080(212), A070081(212), A070082(212)]=[5,12,13], A070085(212)=5^2+12^2-13^2=25+144-169=0.
		

Crossrefs

Programs

  • Mathematica
    m = 500 (* max perimeter *);
    sides[per_] := Select[Reverse /@ IntegerPartitions[per, {3}, Range[ Ceiling[per/2]]], #[[1]] < per/2 && #[[2]] < per/2 && #[[3]] < per/2 &];
    triangles = DeleteCases[Table[sides[per], {per, 3, m}], {}] // Flatten[#, 1]& // SortBy[Total[#] m^3 + #[[1]] m^2 + #[[2]] m + #[[1]] &];
    Position[triangles, {a_, b_, c_} /; a^2 + b^2 == c^2] // Flatten (* Jean-François Alcover, Oct 12 2021 *)

A070209 Numbers n such that [A070080(n), A070081(n), A070082(n)] is an integer triangle with integer inradius.

Original entry on oeis.org

17, 116, 212, 269, 368, 370, 493, 561, 587, 659, 850, 1204, 1297, 1582, 1599, 1629, 1920, 1988, 2115, 2352, 2555, 2574, 2774, 2778, 3251, 3473, 3746, 3751, 4286, 4298, 4307, 4313, 4319, 4330, 4370, 4406, 5008, 5251
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			a(3)=212: [A070080(212), A070081(212), A070082(212)] = [5,12,13], for s = A070083(212)/2 = (5+12+13)/2 = 15: inradius = sqrt((s-5)*(s-12)*(s-13)/s) = sqrt(10*3*2/15) = sqrt(4) = 2; therefore A070200(212)=2. [Corrected by _Rick L. Shepherd_, May 15 2008]
		

References

  • Mohammad K. Azarian, Circumradius and Inradius, Problem S125, Math Horizons, Vol. 15, Issue 4, April 2008, p. 32. Solution published in Vol. 16, Issue 2, November 2008, p. 32.

Crossrefs

A070143 Numbers n such that [A070080(n), A070081(n), A070082(n)] is an integer triangle with integer area, having relatively prime side lengths.

Original entry on oeis.org

17, 39, 52, 212, 252, 368, 375, 493, 561, 587, 659, 839, 957, 972, 1156, 1186, 1196, 1297, 1582, 1912, 1955, 1971, 2115, 2352, 2555, 2574, 2713, 3251, 3473, 3728, 3746, 4286, 4298, 4313, 4319, 4330, 5251, 5272, 5378
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Crossrefs

Cf. A070142.

A070145 Numbers n such that [A070080(n), A070081(n), A070082(n)] is an isosceles integer triangle with integer area.

Original entry on oeis.org

39, 52, 269, 372, 375, 862, 957, 972, 1204, 1955, 1971, 1988, 2790, 2796, 3818, 5374, 6522, 6880, 6881, 6921, 7234, 7310, 7341, 7360, 9198, 9207, 10272, 14506, 15101, 15177, 15237, 21289, 21493, 21540, 21552, 21589
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			a(1)=39: [A070080(39), A070081(39), A070082(39)] = [5=5<6], area^2 = s*(s-5)*(s-5)*(s-6) with s=A070083(39)/2=(5+5+6)/2=8, area^2=8*3*3*2=16*9 is an integer square, therefore A070086(39)=area=4*3=12.
		

Crossrefs

A070144 Numbers n such that [A070080(n), A070081(n), A070082(n)] is a scalene integer triangle with integer area.

Original entry on oeis.org

17, 116, 212, 252, 368, 370, 493, 561, 587, 659, 839, 850, 1156, 1186, 1196, 1297, 1582, 1599, 1629, 1912, 1920, 2115, 2352, 2555, 2574, 2713, 2774, 2778, 3251, 3473, 3728, 3746, 3751, 4286, 4298, 4307, 4313, 4319
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			a(2)=116: [A070080(116), A070081(116), A070082(116)] = [6<8<10], area^2 = s*(s-6)*(s-8)*(s-10) with s=A070083(116)/2=(6+8+10)/2=12, area^2=12*6*4*2=64*9 is an integer square, therefore A070086(116)=area=8*3=24.
		

Crossrefs

A070146 Numbers n such that [A070080(n), A070081(n), A070082(n)] is an acute integer triangle with integer area.

Original entry on oeis.org

39, 269, 375, 587, 862, 972, 1196, 1955, 1988, 2352, 2555, 2796, 3818, 4319, 4406, 5378, 6522, 6808, 6880, 6890, 6921, 7234, 7360, 8193, 9159, 9207, 10272, 14545, 15004, 15061, 15101, 15216, 15237, 15943, 16502
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			a(1)=39: [A070080(39), A070081(39), A070082(39)] = [5,5,6]: A070085(39)=5^2+5^2-6^2=14>0 and area^2 = s*(s-5)*(s-5)*(s-6) with s=A070083(39)/2=(5+5+6)/2=8, area^2=8*3*3*2=16*9 is an integer square, therefore A070086(39)=area=4*3=12.
		

Crossrefs

A070147 Numbers k such that [A070080(k), A070081(k), A070082(k)] is an obtuse integer triangle with integer area.

Original entry on oeis.org

52, 252, 368, 372, 561, 659, 839, 957, 1156, 1186, 1204, 1582, 1912, 1920, 1971, 2115, 2713, 2774, 2790, 3251, 3473, 3728, 3746, 4286, 4307, 4313, 4330, 5008, 5272, 5374, 6369, 6389, 6432, 6776, 6881, 7223, 7310, 7341
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			a(1)=52: [A070080(52), A070081(52), A070082(52)] = [5,5,8]: A070085(52)=5^2+5^2-8^2=-14<0 and area^2 = s*(s-5)*(s-5)*(s-6) with s=A070083(52)/2=(5+5+8)/2=9, area^2=9*4*4*1=16*9 is an integer square, therefore A070086(52)=area=4*3=12.
		

Crossrefs

Showing 1-10 of 11 results. Next