A070174 Primes p such that (p^2)! and 2^(p^2)-1 are not relatively prime.
2, 3, 11, 23, 29, 37, 43, 73, 79, 83, 113, 131, 151, 179, 191, 197, 211, 223, 233, 239, 251, 263, 283, 317, 337, 359, 367, 397, 419, 431, 443, 461, 463, 487, 491, 499, 547, 557, 571, 577, 593, 601, 617, 619, 641, 659, 683, 719
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A069180.
Programs
-
Maple
filter:= proc(p) local t,q,i; if not isprime(p) then return false fi; t:= 2^p-1; igcd(t, convert(select(isprime,[seq(i,i=1..p^2,2*p)]),`*`)) <> 1 end proc: filter(2):= true: select(filter, [2,seq(i,i=3..1000,2)]); # Robert Israel, Aug 26 2024
-
Mathematica
Select[Prime[Range[130]],!CoprimeQ[(#^2)!,2^#^2-1]&] (* Harvey P. Dale, Jan 15 2022 *)
-
PARI
forprime(n=1,263,if(gcd((n^2)!,2^(n^2)-1)>1,print1(n,",")))
Extensions
More terms from Ralf Stephan, Oct 14 2002
Comments