cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A070176 Let s(n) be smallest number >= n which is a sum of two squares (A001481); sequence gives s(n) - n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 2, 1, 0, 0, 0, 2, 1, 0, 2, 1, 0, 0, 0, 1, 0, 4, 3, 2, 1, 0, 0, 2, 1, 0, 2, 1, 0, 1, 0, 1, 0, 0, 2, 1, 0, 0, 3, 2, 1, 0, 3, 2, 1, 0, 0, 1, 0, 0, 4, 3, 2, 1, 0, 2, 1, 0, 2, 1, 0, 0, 2, 1, 0, 3, 2, 1, 0, 0, 0, 5, 4, 3, 2, 1, 0, 0, 0, 2, 1, 0, 3, 2, 1, 0, 0, 6, 5, 4, 3, 2, 1, 0, 0, 1, 0, 0, 2, 1, 0
Offset: 0

Views

Author

N. J. A. Sloane, May 13 2002

Keywords

Comments

It is an unsolved problem to determine the rate of growth of this sequence.
a(A001481(n)) = 0; a(A022544(n)) > 0. [Reinhard Zumkeller, Feb 04 2012]

References

  • H. L. Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, Amer. Math. Soc., 1996, p. 208.

Programs

  • Haskell
    a070176 n = (head $ dropWhile (< n) a001481_list) - n
    a070176_list = map a070176 [0..]
    -- Reinhard Zumkeller, Feb 04 2012
  • Mathematica
    sumOfTwoSquaresQ[n_] := With[{r = Ceiling[Sqrt[n]]}, Do[ Which[n == x^2 + y^2, Return[True], x == r && y == r, Return[False]], {x, 0, r}, {y, x, r}]]; a[n_] := For[s = n, True, s++, If[sumOfTwoSquaresQ[s], Return[s - n]]]; Table[a[n], {n, 0, 104}](* Jean-François Alcover, May 23 2012 *)
    s2s[n_]:=Module[{i=0},While[SquaresR[2,n+i]==0,i++];i]; Array[s2s,110,0] (* Harvey P. Dale, Jun 16 2012 *)

Extensions

More terms from Jason Earls, Jun 15 2002