A070176 Let s(n) be smallest number >= n which is a sum of two squares (A001481); sequence gives s(n) - n.
0, 0, 0, 1, 0, 0, 2, 1, 0, 0, 0, 2, 1, 0, 2, 1, 0, 0, 0, 1, 0, 4, 3, 2, 1, 0, 0, 2, 1, 0, 2, 1, 0, 1, 0, 1, 0, 0, 2, 1, 0, 0, 3, 2, 1, 0, 3, 2, 1, 0, 0, 1, 0, 0, 4, 3, 2, 1, 0, 2, 1, 0, 2, 1, 0, 0, 2, 1, 0, 3, 2, 1, 0, 0, 0, 5, 4, 3, 2, 1, 0, 0, 0, 2, 1, 0, 3, 2, 1, 0, 0, 6, 5, 4, 3, 2, 1, 0, 0, 1, 0, 0, 2, 1, 0
Offset: 0
References
- H. L. Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, Amer. Math. Soc., 1996, p. 208.
Links
- T. D. Noe, Table of n, a(n) for n = 0..10000
Programs
-
Haskell
a070176 n = (head $ dropWhile (< n) a001481_list) - n a070176_list = map a070176 [0..] -- Reinhard Zumkeller, Feb 04 2012
-
Mathematica
sumOfTwoSquaresQ[n_] := With[{r = Ceiling[Sqrt[n]]}, Do[ Which[n == x^2 + y^2, Return[True], x == r && y == r, Return[False]], {x, 0, r}, {y, x, r}]]; a[n_] := For[s = n, True, s++, If[sumOfTwoSquaresQ[s], Return[s - n]]]; Table[a[n], {n, 0, 104}](* Jean-François Alcover, May 23 2012 *) s2s[n_]:=Module[{i=0},While[SquaresR[2,n+i]==0,i++];i]; Array[s2s,110,0] (* Harvey P. Dale, Jun 16 2012 *)
Extensions
More terms from Jason Earls, Jun 15 2002
Comments