cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A001481 Numbers that are the sum of 2 squares.

Original entry on oeis.org

0, 1, 2, 4, 5, 8, 9, 10, 13, 16, 17, 18, 20, 25, 26, 29, 32, 34, 36, 37, 40, 41, 45, 49, 50, 52, 53, 58, 61, 64, 65, 68, 72, 73, 74, 80, 81, 82, 85, 89, 90, 97, 98, 100, 101, 104, 106, 109, 113, 116, 117, 121, 122, 125, 128, 130, 136, 137, 144, 145, 146, 148, 149, 153, 157, 160
Offset: 1

Views

Author

Keywords

Comments

Numbers n such that n = x^2 + y^2 has a solution in nonnegative integers x, y.
Closed under multiplication. - David W. Wilson, Dec 20 2004
Also, numbers whose cubes are the sum of 2 squares. - Artur Jasinski, Nov 21 2006 (Cf. A125110.)
Terms are the squares of smallest radii of circles covering (on a square grid) a number of points equal to the terms of A057961. - Philippe Lallouet (philip.lallouet(AT)wanadoo.fr), Apr 16 2007. [Comment corrected by T. D. Noe, Mar 28 2008]
Numbers with more 4k+1 divisors than 4k+3 divisors. If a(n) is a member of this sequence, then so too is any power of a(n). - Ant King, Oct 05 2010
A000161(a(n)) > 0; A070176(a(n)) = 0. - Reinhard Zumkeller, Feb 04 2012, Aug 16 2011
Numbers that are the norms of Gaussian integers. This sequence has unique factorization; the primitive elements are A055025. - Franklin T. Adams-Watters, Nov 25 2011
These are numbers n such that all of n's odd prime factors congruent to 3 modulo 4 occur to an even exponent (Fermat's two-squares theorem). - Jean-Christophe Hervé, May 01 2013
Let's say that an integer n divides a lattice if there exists a sublattice of index n. Example: 2, 4, 5 divide the square lattice. The present sequence without 0 is the sequence of divisors of the square lattice. Say that n is a "prime divisor" if the index-n sublattice is not contained in any other sublattice except the original lattice itself. Then A055025 (norms of Gaussian primes) gives the "prime divisors" of the square lattice. - Jean-Christophe Hervé, May 01 2013
For any i,j > 0 a(i)*a(j) is a member of this sequence, since (a^2 + b^2)*(c^2 + d^2) = (a*c + b*d)^2 + (a*d - b*c)^2. - Boris Putievskiy, May 05 2013
The sequence is closed under multiplication. Primitive elements are in A055025. The sequence can be split into 3 multiplicatively closed subsequences: {0}, A004431 and A125853. - Jean-Christophe Hervé, Nov 17 2013
Generalizing Jasinski's comment, same as numbers whose odd powers are the sum of 2 squares, by Fermat's two-squares theorem. - Jonathan Sondow, Jan 24 2014
By the 4 squares theorem, every nonnegative integer can be expressed as the sum of two elements of this sequence. - Franklin T. Adams-Watters, Mar 28 2015
There are never more than 3 consecutive terms. Runs of 3 terms start at 0, 8, 16, 72, ... (A082982). - Ivan Neretin, Nov 09 2015
Conjecture: barring the 0+2, 0+4, 0+8, 0+16, ... sequence, the sum of 2 distinct terms in this sequence is never a power of 2. - J. Lowell, Jan 14 2022
All the areas of squares whose vertices have integer coordinates. - Neeme Vaino, Jun 14 2023
Numbers represented by the definite binary quadratic forms x^2 + 2nxy + (n^2+1)y^2 for any integer n. This sequence contains the even powers of any integer. An odd power of a number appears only if the number itself belongs to the sequence. The equation given in the comment by Boris Putievskiy 2013 is Brahmagupta's identity with n = 1. It proves that any set of numbers of the form a^2 + nb^2 is closed under multiplication. - Klaus Purath, Sep 06 2023

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 106.
  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989.
  • L. Euler, (E388) Vollständige Anleitung zur Algebra, Zweiter Theil, reprinted in: Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 1, p. 417.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 98-104.
  • G. H. Hardy, Ramanujan, pp. 60-63.
  • P. Moree and J. Cazaran, On a claim of Ramanujan in his first letter to Hardy, Expos. Math. 17 (1999), pp. 289-312.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Disjoint union of A000290 and A000415.
Complement of A022544.
A000404 gives another version. Subsequence of A091072, supersequence of A046711.
Column k=2 of A336820.

Programs

  • Haskell
    a001481 n = a001481_list !! (n-1)
    a001481_list = [x | x <- [0..], a000161 x > 0]
    -- Reinhard Zumkeller, Feb 14 2012, Aug 16 2011
    
  • Magma
    [n: n in [0..160] | NormEquation(1, n) eq true]; // Arkadiusz Wesolowski, May 11 2016
    
  • Maple
    readlib(issqr): for n from 0 to 160 do for k from 0 to floor(sqrt(n)) do if issqr(n-k^2) then printf(`%d,`,n); break fi: od: od:
  • Mathematica
    upTo = 160; With[{max = Ceiling[Sqrt[upTo]]}, Select[Union[Total /@ (Tuples[Range[0, max], {2}]^2)], # <= upTo &]]  (* Harvey P. Dale, Apr 22 2011 *)
    Select[Range[0, 160], SquaresR[2, #] != 0 &] (* Jean-François Alcover, Jan 04 2013 *)
  • PARI
    isA001481(n)=local(x,r);x=0;r=0;while(x<=sqrt(n) && r==0,if(issquare(n-x^2),r=1);x++);r \\ Michael B. Porter, Oct 31 2009
    
  • PARI
    is(n)=my(f=factor(n));for(i=1,#f[,1],if(f[i,2]%2 && f[i,1]%4==3, return(0))); 1 \\ Charles R Greathouse IV, Aug 24 2012
    
  • PARI
    B=bnfinit('z^2+1,1);
    is(n)=#bnfisintnorm(B,n) \\ Ralf Stephan, Oct 18 2013, edited by M. F. Hasler, Nov 21 2017
    
  • PARI
    list(lim)=my(v=List(),t); for(m=0,sqrtint(lim\=1), t=m^2; for(n=0, min(sqrtint(lim-t),m), listput(v,t+n^2))); Set(v) \\ Charles R Greathouse IV, Jan 05 2016
    
  • PARI
    is_A001481(n)=!for(i=2-bittest(n,0),#n=factor(n)~, bittest(n[1,i],1)&&bittest(n[2,i],0)&&return) \\ M. F. Hasler, Nov 20 2017
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A001481_gen(): # generator of terms
        return filter(lambda n:(lambda m:all(d & 3 != 3 or m[d] & 1 == 0 for d in m))(factorint(n)),count(0))
    A001481_list = list(islice(A001481_gen(),30)) # Chai Wah Wu, Jun 27 2022

Formula

n = square * 2^{0 or 1} * {product of distinct primes == 1 (mod 4)}.
The number of integers less than N that are sums of two squares is asymptotic to constant*N/sqrt(log(N)), hence lim_{n->infinity} a(n)/n = infinity.
Nonzero terms in expansion of Dirichlet series Product_p (1 - (Kronecker(m, p) + 1)*p^(-s) + Kronecker(m, p)*p^(-2s))^(-1) for m = -1.
a(n) ~ k*n*sqrt(log n), where k = 1.3085... = 1/A064533. - Charles R Greathouse IV, Apr 16 2012
There are B(x) = x/sqrt(log x) * (K + B2/log x + O(1/log^2 x)) terms of this sequence up to x, where K = A064533 and B2 = A227158. - Charles R Greathouse IV, Nov 18 2022

Extensions

Deleted an incorrect comment. - N. J. A. Sloane, Oct 03 2023

A022544 Numbers that are not the sum of 2 squares.

Original entry on oeis.org

3, 6, 7, 11, 12, 14, 15, 19, 21, 22, 23, 24, 27, 28, 30, 31, 33, 35, 38, 39, 42, 43, 44, 46, 47, 48, 51, 54, 55, 56, 57, 59, 60, 62, 63, 66, 67, 69, 70, 71, 75, 76, 77, 78, 79, 83, 84, 86, 87, 88, 91, 92, 93, 94, 95, 96, 99, 102, 103, 105, 107, 108, 110, 111, 112, 114, 115, 118, 119, 120, 123, 124, 126, 127, 129, 131, 132, 133, 134, 135, 138, 139, 140, 141, 142, 143, 147, 150, 151, 152, 154, 155, 156, 158, 159, 161, 163, 165, 166, 167, 168, 171, 172, 174, 175, 176, 177, 179, 182, 183, 184, 186, 187, 188, 189, 190, 191, 192, 195, 198, 199
Offset: 1

Views

Author

Keywords

Comments

Conjecture: if k is not the sum of 2 squares then sigma(k) == 0 (mod 4) (the converse does not hold, as demonstrated by the entries in A025303). - Benoit Cloitre, May 19 2002
Numbers having some prime factor p == 3 (mod 4) to an odd power. sigma(n) == 0 (mod 4) because of this prime factor. Every k == 3 (mod 4) is a term. First differences are always 1, 2, 3 or 4, each occurring infinitely often. - David W. Wilson, Mar 09 2005
Complement of A000415 in the nonsquare positive integers A000037. - Max Alekseyev, Jan 21 2010
Integers with an equal number of 4k+1 and 4k+3 divisors. - Ant King, Oct 05 2010
A000161(a(n)) = 0; A070176(a(n)) > 0; A046712 is a subsequence. - Reinhard Zumkeller, Feb 04 2012, Aug 16 2011
There are arbitrarily long runs of consecutive terms. Record runs start at 3, 6, 21, 75, ... (A260157). - Ivan Neretin, Nov 09 2015
From Klaus Purath, Sep 04 2023: (Start)
There are no squares in this sequence.
There are also no numbers of the form n^2 + 1 (A002522) or n^2 + 4 (A087475).
Every term a(n) raised to an odd power belongs to the sequence just as every product of an odd number of terms. This is also true for all integer sequences represented by the indefinite binary quadratic forms a(n)*x^2 - y^2. These sequences also do not contain squares. (End)

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 98-104.

Crossrefs

Complement of A001481; subsequence of A111909.

Programs

  • Haskell
    import Data.List (elemIndices)
    a022544 n = a022544_list !! (n-1)
    a022544_list = elemIndices 0 a000161_list
    -- Reinhard Zumkeller, Aug 16 2011
    
  • Magma
    [n: n in [0..160] | NormEquation(1, n) eq false]; // Vincenzo Librandi, Jan 15 2017
    
  • Mathematica
    Select[Range[199], Length[PowersRepresentations[ #, 2, 2]] == 0 &] (* Ant King, Oct 05 2010 *)
    Select[Range[200],SquaresR[2,#]==0&] (* Harvey P. Dale, Apr 21 2012 *)
  • PARI
    for(n=0,200,if(sum(i=0,n,sum(j=0,i,if(i^2+j^2-n,0,1)))==0,print1((n),",")))
    
  • PARI
    is(n)=if(n%4==3, return(1)); my(f=factor(n)); for(i=1,#f~, if(f[i,1]%4==3 && f[i,2]%2, return(1))); 0 \\ Charles R Greathouse IV, Sep 01 2015
    
  • Python
    def aupto(lim):
      squares = [k*k for k in range(int(lim**.5)+2) if k*k <= lim]
      sum2sqs = set(a+b for i, a in enumerate(squares) for b in squares[i:])
      return sorted(set(range(lim+1)) - sum2sqs)
    print(aupto(199)) # Michael S. Branicky, Mar 06 2021
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A022544_gen(): # generator of terms
        return filter(lambda n:any(p & 3 == 3 and e & 1 for p, e in factorint(n).items()),count(0))
    A022544_list = list(islice(A022544_gen(),30)) # Chai Wah Wu, Jun 28 2022

Formula

Limit_{n->oo} a(n)/n = 1.

Extensions

More terms from Benoit Cloitre, May 19 2002

A229062 1 if n is representable as sum of two nonnegative squares, otherwise 0.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1
Offset: 0

Views

Author

Ralf Stephan, Sep 17 2013

Keywords

Comments

Characteristic function of A001481.
a(n) = 1 if A000161(n) > 0.
a(A022544(n)) = 0.
Multiplicative because A002654 is. - Andrew Howroyd, Aug 01 2018
For positive n, m = 2*a(n) + 1 is the smallest positive integer such that m * n is not a sum of two squares. - Peter Schorn, Dec 29 2023

Crossrefs

Cf. A002654, A004018, A070176. Partial sums are in A102548.

Programs

  • Mathematica
    Join[{1},Table[If[SquaresR[2,n]>1,1,0],{n,120}]] (* Harvey P. Dale, Aug 25 2017 *)
  • PARI
    a(n)=my(f=0); my(r=sqrtint(n)); forstep(i=r, 1, -1, if(issquare(n-i*i), f=1; break)); f
    
  • PARI
    a(n)=if(0==n,1,(sumdiv(n, d,(d%4==1) - (d%4==3)) > 0)); \\ Andrew Howroyd, Aug 01 2018, the check for 0-argument added by Antti Karttunen, Apr 22 2022
    
  • Python
    from sympy import factorint
    def A229062(n): return int(all(p & 3 != 3 or e & 1 == 0 for p, e in factorint(n).items())) # Chai Wah Wu, Jun 28 2022

Formula

a(n) = min{1, A004018(n)}. - N. J. A. Sloane, Jan 11 2020
Showing 1-3 of 3 results.