cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 59 results. Next

A174440 Partial sums of A022544.

Original entry on oeis.org

3, 9, 16, 27, 39, 53, 68, 87, 108, 130, 153, 177, 204, 232, 262, 293, 326, 361, 399, 438, 480, 523, 567, 613, 660, 708, 759, 813, 868, 924, 981, 1040, 1100, 1162, 1225, 1291, 1358, 1427, 1497, 1568, 1643, 1719, 1796, 1874, 1953, 2036, 2120, 2206, 2293, 2381
Offset: 1

Views

Author

Jonathan Vos Post, Mar 20 2010

Keywords

Comments

Partial sums of numbers that are not the sum of 2 squares. The subsequence of primes in this partial sum begins: 3, 53, 293, 523, 613, 1291, 1427, 2293, 2381, 2657, 3041, 4013, 5779, 6337, 7687, 9337, 9511, 10039. The subsequence of squares in this partial sum begins: 9, 16, 361, 1225.

Examples

			a(22) = 3 + 6 + 7 + 11 + 12 + 14 + 15 + 19 + 21 + 22 + 23 + 24 + 27 + 28 + 30 + 31 + 33 + 35 + 38 + 39 + 42 + 43 = 523 is prime.
		

Crossrefs

Formula

a(n) = SUM[i=1..n] A022544(i) = SUM[i=1..n] {numbers that are not the sum of 2 squares} = SUM[i=1..n] {numbers having some prime factor p == 3 (mod 4) to an odd power}.

A002145 Primes of the form 4*k + 3.

Original entry on oeis.org

3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83, 103, 107, 127, 131, 139, 151, 163, 167, 179, 191, 199, 211, 223, 227, 239, 251, 263, 271, 283, 307, 311, 331, 347, 359, 367, 379, 383, 419, 431, 439, 443, 463, 467, 479, 487, 491, 499, 503, 523, 547, 563, 571
Offset: 1

Views

Author

Keywords

Comments

Or, odd primes p such that -1 is not a square mod p, i.e., the Legendre symbol (-1/p) = -1. [LeVeque I, p. 66]. - N. J. A. Sloane, Jun 28 2008
Primes which are not the sum of two squares, see the comment in A022544. - Artur Jasinski, Nov 15 2006
Natural primes which are also Gaussian primes. (It is a common error to refer to this sequence as "the Gaussian primes".)
Inert rational primes in the field Q(sqrt(-1)). - N. J. A. Sloane, Dec 25 2017
Numbers n such that the product of coefficients of (2n)-th cyclotomic polynomial equals -1. - Benoit Cloitre, Oct 22 2002
For p and q both belonging to the sequence, exactly one of the congruences x^2 = p (mod q), x^2 = q (mod p) is solvable, according to Gauss reciprocity law. - Lekraj Beedassy, Jul 17 2003
Also primes p that divide L((p-1)/2) or L((p+1)/2), where L(n) = A000032(n), the Lucas numbers. Union of A122869 and A122870. - Alexander Adamchuk, Sep 16 2006
Also odd primes p that divide ((p-1)!! + 1) or ((p-2)!! + 1). - Alexander Adamchuk, Nov 30 2006
Also odd primes p that divide ((p-1)!! - 1) or ((p-2)!! - 1). - Alexander Adamchuk, Apr 18 2007
This sequence is a proper subset of the set of the absolute values of negative fundamental discriminants (A003657). - Paul Muljadi, Mar 29 2008
Bernard Frénicle de Bessy discovered that such primes cannot be the hypotenuse of a Pythagorean triangle in opposition to primes of the form 4*n+1 (see A002144). - after Paul Curtz, Sep 10 2008
A079261(a(n)) = 1; complement of A145395. - Reinhard Zumkeller, Oct 12 2008
Subsequence of A007970. - Reinhard Zumkeller, Jun 18 2011
A151763(a(n)) = -1.
Primes p such that p XOR 2 = p - 2. Brad Clardy, Oct 25 2011 (Misleading in the sense that this is a formula for the super-sequence A004767. - R. J. Mathar, Jul 28 2014)
It appears that each term of A004767 is the mean of two terms of this subsequence of primes therein; cf. A245203. - M. F. Hasler, Jul 13 2014
Numbers n > 2 such that ((n-2)!!)^2 == 1 (mod n). - Thomas Ordowski, Jul 24 2016
Odd numbers n > 1 such that ((n-1)!!)^2 == 1 (mod n). - Thomas Ordowski, Jul 25 2016
Primes p such that (p-2)!! == (p-3)!! (mod p). - Thomas Ordowski, Jul 28 2016
See Granville and Martin for a discussion of the relative numbers of primes of the form 4k+1 and 4k+3. - Editors, May 01 2017
Sometimes referred to as Blum primes for their connection to A016105 and the Blum Blum Shub generator. - Charles R Greathouse IV, Jun 14 2018
Conjecture: a(n) for n > 4 can be written as a sum of 3 primes of the form 4k+1, which would imply that primes of the form 4k+3 >= 23 can be decomposed into a sum of 6 nonzero squares. - Thomas Scheuerle, Feb 09 2023

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 146-147.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, p. 219, th. 252.
  • W. J. LeVeque, Topics in Number Theory. Addison-Wesley, Reading, MA, 2 vols., 1956, Vol. 1, p. 66.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 90.

Crossrefs

Apart from initial term, same as A045326.
Cf. A016105.
Cf. A004614 (multiplicative closure).

Programs

  • Haskell
    a002145 n = a002145_list !! (n-1)
    a002145_list = filter ((== 1) . a010051) [3, 7 ..]
    -- Reinhard Zumkeller, Aug 02 2015, Sep 23 2011
    
  • Magma
    [4*n+3 : n in [0..142] | IsPrime(4*n+3)]; // Arkadiusz Wesolowski, Nov 15 2013
    
  • Maple
    A002145 := proc(n)
        option remember;
        if n = 1 then
            3;
        else
            a := nextprime(procname(n-1)) ;
            while a mod 4 <>  3 do
                a := nextprime(a) ;
            end do;
            return a;
        end if;
    end proc:
    seq(A002145(n),n=1..20) ; # R. J. Mathar, Dec 08 2011
  • Mathematica
    Select[4Range[150] - 1, PrimeQ] (* Alonso del Arte, Dec 19 2013 *)
    Select[ Prime@ Range[2, 110], Length@ PowersRepresentations[#^2, 2, 2] == 1 &] (* or *)
    Select[ Prime@ Range[2, 110], JacobiSymbol[-1, #] == -1 &] (* Robert G. Wilson v, May 11 2014 *)
  • PARI
    forprime(p=2,1e3,if(p%4==3,print1(p", "))) \\ Charles R Greathouse IV, Jun 10 2011
    
  • Sage
    def A002145_list(n): return [p for p in prime_range(1, n + 1) if p % 4 == 3]  # Peter Luschny, Jul 29 2014

Formula

Remove from A000040 terms that are in A002313.
Intersection of A000040 and A004767. - Alonso del Arte, Apr 22 2014
From Vaclav Kotesovec, Apr 30 2020: (Start)
Product_{k>=1} (1 - 1/a(k)^2) = A243379.
Product_{k>=1} (1 + 1/a(k)^2) = A243381.
Product_{k>=1} (1 - 1/a(k)^3) = A334427.
Product_{k>=1} (1 + 1/a(k)^3) = A334426.
Product_{k>=1} (1 - 1/a(k)^4) = A334448.
Product_{k>=1} (1 + 1/a(k)^4) = A334447.
Product_{k>=1} (1 - 1/a(k)^5) = A334452.
Product_{k>=1} (1 + 1/a(k)^5) = A334451. (End)
From Vaclav Kotesovec, May 05 2020: (Start)
Product_{k>=1} (1 + 1/a(k)) / (1 + 1/A002144(k)) = Pi/(4*A064533^2) = 1.3447728438248695625516649942427635670667319092323632111110962...
Product_{k>=1} (1 - 1/a(k)) / (1 - 1/A002144(k)) = Pi/(8*A064533^2) = 0.6723864219124347812758324971213817835333659546161816055555481... (End)
Sum_{k >= 1} 1/a(k)^s = (1/2) * Sum_{n >= 1 odd numbers} moebius(n) * log(2 * (2^(n*s) - 1) * (n*s - 1)! * zeta(n*s) / (Pi^(n*s) * abs(EulerE(n*s - 1))))/n, s >= 3 odd number. - Dimitris Valianatos, May 20 2020

Extensions

More terms from James Sellers, Apr 21 2000

A001481 Numbers that are the sum of 2 squares.

Original entry on oeis.org

0, 1, 2, 4, 5, 8, 9, 10, 13, 16, 17, 18, 20, 25, 26, 29, 32, 34, 36, 37, 40, 41, 45, 49, 50, 52, 53, 58, 61, 64, 65, 68, 72, 73, 74, 80, 81, 82, 85, 89, 90, 97, 98, 100, 101, 104, 106, 109, 113, 116, 117, 121, 122, 125, 128, 130, 136, 137, 144, 145, 146, 148, 149, 153, 157, 160
Offset: 1

Views

Author

Keywords

Comments

Numbers n such that n = x^2 + y^2 has a solution in nonnegative integers x, y.
Closed under multiplication. - David W. Wilson, Dec 20 2004
Also, numbers whose cubes are the sum of 2 squares. - Artur Jasinski, Nov 21 2006 (Cf. A125110.)
Terms are the squares of smallest radii of circles covering (on a square grid) a number of points equal to the terms of A057961. - Philippe Lallouet (philip.lallouet(AT)wanadoo.fr), Apr 16 2007. [Comment corrected by T. D. Noe, Mar 28 2008]
Numbers with more 4k+1 divisors than 4k+3 divisors. If a(n) is a member of this sequence, then so too is any power of a(n). - Ant King, Oct 05 2010
A000161(a(n)) > 0; A070176(a(n)) = 0. - Reinhard Zumkeller, Feb 04 2012, Aug 16 2011
Numbers that are the norms of Gaussian integers. This sequence has unique factorization; the primitive elements are A055025. - Franklin T. Adams-Watters, Nov 25 2011
These are numbers n such that all of n's odd prime factors congruent to 3 modulo 4 occur to an even exponent (Fermat's two-squares theorem). - Jean-Christophe Hervé, May 01 2013
Let's say that an integer n divides a lattice if there exists a sublattice of index n. Example: 2, 4, 5 divide the square lattice. The present sequence without 0 is the sequence of divisors of the square lattice. Say that n is a "prime divisor" if the index-n sublattice is not contained in any other sublattice except the original lattice itself. Then A055025 (norms of Gaussian primes) gives the "prime divisors" of the square lattice. - Jean-Christophe Hervé, May 01 2013
For any i,j > 0 a(i)*a(j) is a member of this sequence, since (a^2 + b^2)*(c^2 + d^2) = (a*c + b*d)^2 + (a*d - b*c)^2. - Boris Putievskiy, May 05 2013
The sequence is closed under multiplication. Primitive elements are in A055025. The sequence can be split into 3 multiplicatively closed subsequences: {0}, A004431 and A125853. - Jean-Christophe Hervé, Nov 17 2013
Generalizing Jasinski's comment, same as numbers whose odd powers are the sum of 2 squares, by Fermat's two-squares theorem. - Jonathan Sondow, Jan 24 2014
By the 4 squares theorem, every nonnegative integer can be expressed as the sum of two elements of this sequence. - Franklin T. Adams-Watters, Mar 28 2015
There are never more than 3 consecutive terms. Runs of 3 terms start at 0, 8, 16, 72, ... (A082982). - Ivan Neretin, Nov 09 2015
Conjecture: barring the 0+2, 0+4, 0+8, 0+16, ... sequence, the sum of 2 distinct terms in this sequence is never a power of 2. - J. Lowell, Jan 14 2022
All the areas of squares whose vertices have integer coordinates. - Neeme Vaino, Jun 14 2023
Numbers represented by the definite binary quadratic forms x^2 + 2nxy + (n^2+1)y^2 for any integer n. This sequence contains the even powers of any integer. An odd power of a number appears only if the number itself belongs to the sequence. The equation given in the comment by Boris Putievskiy 2013 is Brahmagupta's identity with n = 1. It proves that any set of numbers of the form a^2 + nb^2 is closed under multiplication. - Klaus Purath, Sep 06 2023

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 106.
  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989.
  • L. Euler, (E388) Vollständige Anleitung zur Algebra, Zweiter Theil, reprinted in: Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 1, p. 417.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 98-104.
  • G. H. Hardy, Ramanujan, pp. 60-63.
  • P. Moree and J. Cazaran, On a claim of Ramanujan in his first letter to Hardy, Expos. Math. 17 (1999), pp. 289-312.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Disjoint union of A000290 and A000415.
Complement of A022544.
A000404 gives another version. Subsequence of A091072, supersequence of A046711.
Column k=2 of A336820.

Programs

  • Haskell
    a001481 n = a001481_list !! (n-1)
    a001481_list = [x | x <- [0..], a000161 x > 0]
    -- Reinhard Zumkeller, Feb 14 2012, Aug 16 2011
    
  • Magma
    [n: n in [0..160] | NormEquation(1, n) eq true]; // Arkadiusz Wesolowski, May 11 2016
    
  • Maple
    readlib(issqr): for n from 0 to 160 do for k from 0 to floor(sqrt(n)) do if issqr(n-k^2) then printf(`%d,`,n); break fi: od: od:
  • Mathematica
    upTo = 160; With[{max = Ceiling[Sqrt[upTo]]}, Select[Union[Total /@ (Tuples[Range[0, max], {2}]^2)], # <= upTo &]]  (* Harvey P. Dale, Apr 22 2011 *)
    Select[Range[0, 160], SquaresR[2, #] != 0 &] (* Jean-François Alcover, Jan 04 2013 *)
  • PARI
    isA001481(n)=local(x,r);x=0;r=0;while(x<=sqrt(n) && r==0,if(issquare(n-x^2),r=1);x++);r \\ Michael B. Porter, Oct 31 2009
    
  • PARI
    is(n)=my(f=factor(n));for(i=1,#f[,1],if(f[i,2]%2 && f[i,1]%4==3, return(0))); 1 \\ Charles R Greathouse IV, Aug 24 2012
    
  • PARI
    B=bnfinit('z^2+1,1);
    is(n)=#bnfisintnorm(B,n) \\ Ralf Stephan, Oct 18 2013, edited by M. F. Hasler, Nov 21 2017
    
  • PARI
    list(lim)=my(v=List(),t); for(m=0,sqrtint(lim\=1), t=m^2; for(n=0, min(sqrtint(lim-t),m), listput(v,t+n^2))); Set(v) \\ Charles R Greathouse IV, Jan 05 2016
    
  • PARI
    is_A001481(n)=!for(i=2-bittest(n,0),#n=factor(n)~, bittest(n[1,i],1)&&bittest(n[2,i],0)&&return) \\ M. F. Hasler, Nov 20 2017
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A001481_gen(): # generator of terms
        return filter(lambda n:(lambda m:all(d & 3 != 3 or m[d] & 1 == 0 for d in m))(factorint(n)),count(0))
    A001481_list = list(islice(A001481_gen(),30)) # Chai Wah Wu, Jun 27 2022

Formula

n = square * 2^{0 or 1} * {product of distinct primes == 1 (mod 4)}.
The number of integers less than N that are sums of two squares is asymptotic to constant*N/sqrt(log(N)), hence lim_{n->infinity} a(n)/n = infinity.
Nonzero terms in expansion of Dirichlet series Product_p (1 - (Kronecker(m, p) + 1)*p^(-s) + Kronecker(m, p)*p^(-2s))^(-1) for m = -1.
a(n) ~ k*n*sqrt(log n), where k = 1.3085... = 1/A064533. - Charles R Greathouse IV, Apr 16 2012
There are B(x) = x/sqrt(log x) * (K + B2/log x + O(1/log^2 x)) terms of this sequence up to x, where K = A064533 and B2 = A227158. - Charles R Greathouse IV, Nov 18 2022

Extensions

Deleted an incorrect comment. - N. J. A. Sloane, Oct 03 2023

A004767 a(n) = 4*n + 3.

Original entry on oeis.org

3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63, 67, 71, 75, 79, 83, 87, 91, 95, 99, 103, 107, 111, 115, 119, 123, 127, 131, 135, 139, 143, 147, 151, 155, 159, 163, 167, 171, 175, 179, 183, 187, 191, 195, 199, 203, 207, 211, 215, 219, 223
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0(12).
Binary expansion ends 11.
These the numbers for which zeta(2*x+1) needs just 2 terms to be evaluated. - Jorge Coveiro, Dec 16 2004 [This comment needs clarification]
a(n) is the smallest k such that for every r from 0 to 2n - 1 there exist j and i, k >= j > i > 2n - 1, such that j - i == r (mod (2n - 1)), with (k, (2n - 1)) = (j,(2n - 1)) = (i, (2n - 1)) = 1. - Amarnath Murthy, Sep 24 2003
Complement of A004773. - Reinhard Zumkeller, Aug 29 2005
Any (4n+3)-dimensional manifold endowed with a mixed 3-Sasakian structure is an Einstein space with Einstein constant lambda = 4n + 2 [Theorem 3, p. 10 of Ianus et al.]. - Jonathan Vos Post, Nov 24 2008
Solutions to the equation x^(2*x) = 3*x (mod 4*x). - Farideh Firoozbakht, May 02 2010
Subsequence of A022544. - Vincenzo Librandi, Nov 20 2010
First differences of A084849. - Reinhard Zumkeller, Apr 02 2011
Numbers n such that {1, 2, 3, ..., n} is a losing position in the game of Nim. - Franklin T. Adams-Watters, Jul 16 2011
Numbers n such that there are no primes p that satisfy the relationship p XOR n = p + n. - Brad Clardy, Jul 22 2012
The XOR of all numbers from 1 to a(n) is 0. - David W. Wilson, Apr 21 2013
A089911(4*a(n)) = 4. - Reinhard Zumkeller, Jul 05 2013
First differences of A014105. - Ivan N. Ianakiev, Sep 21 2013
All triangular numbers in the sequence are congruent to {3, 7} mod 8. - Ivan N. Ianakiev, Nov 12 2013
Apart from the initial term, length of minimal path on an n-dimensional cubic lattice (n > 1) of side length 2, until a self-avoiding walk gets stuck. Construct a path connecting all 2n points orthogonally adjacent from the center, ending at the center. Starting at any point adjacent to the center, there are 2 steps to reach each of the remaining 2n - 1 points, resulting in path length 4n - 2 with a final step connecting the center, for a total path length of 4n - 1, comprising 4n points. - Matthew Lehman, Dec 10 2013
a(n-1), n >= 1, appears as first column in the triangles A238476 and A239126 related to the Collatz problem. - Wolfdieter Lang, Mar 14 2014
For the Collatz Conjecture, we identify two types of odd numbers. This sequence contains all the ascenders: where (3*a(n) + 1) / 2 is odd and greater than a(n). See A016813 for the descenders. - Jaroslav Krizek, Jul 29 2016

Examples

			G.f. = 3 + 7*x + 11*x^2 + 15*x^3 + 19*x^4 + 23*x^5 + 27*x^6 + 31*x^7 + ...
		

References

  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 85.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999. See Theorem 8.1 on page 240.

Crossrefs

Cf. A017101 and A004771 (bisection: 3 and 7 mod 8).
Cf. A016838 (square).

Programs

Formula

G.f.: (3+x)/(1-x)^2. - Paul Barry, Feb 27 2003
a(n) = 2*a(n-1) - a(n-2) for n > 1, a(0) = 3, a(1) = 7. - Philippe Deléham, Nov 03 2008
a(n) = A017137(n)/2. - Reinhard Zumkeller, Jul 13 2010
a(n) = 8*n - a(n-1) + 2 for n > 0, a(0) = 3. - Vincenzo Librandi, Nov 20 2010
a(n) = A005408(A005408(n)). - Reinhard Zumkeller, Jun 27 2011
a(n) = 3 + A008586(n). - Omar E. Pol, Jul 27 2012
a(n) = A014105(n+1) - A014105(n). - Michel Marcus, Sep 21 2013
a(n) = A016813(n) + 2. - Jean-Bernard François, Sep 27 2013
a(n) = 4*n - 1, with offset 1. - Wesley Ivan Hurt, Mar 12 2014
From Ilya Gutkovskiy, Jul 29 2016: (Start)
E.g.f.: (3 + 4*x)*exp(x).
Sum_{n >= 0} (-1)^n/a(n) = (Pi + 2*log(sqrt(2) - 1))/(4*sqrt(2)) = A181049. (End)

A004018 Theta series of square lattice (or number of ways of writing n as a sum of 2 squares). Often denoted by r(n) or r_2(n).

Original entry on oeis.org

1, 4, 4, 0, 4, 8, 0, 0, 4, 4, 8, 0, 0, 8, 0, 0, 4, 8, 4, 0, 8, 0, 0, 0, 0, 12, 8, 0, 0, 8, 0, 0, 4, 0, 8, 0, 4, 8, 0, 0, 8, 8, 0, 0, 0, 8, 0, 0, 0, 4, 12, 0, 8, 8, 0, 0, 0, 0, 8, 0, 0, 8, 0, 0, 4, 16, 0, 0, 8, 0, 0, 0, 4, 8, 8, 0, 0, 0, 0, 0, 8, 4, 8, 0, 0, 16, 0, 0, 0, 8, 8, 0, 0, 0, 0, 0, 0, 8, 4, 0, 12, 8
Offset: 0

Views

Author

Keywords

Comments

Number of points in square lattice on the circle of radius sqrt(n). Equivalently, number of Gaussian integers of norm n (cf. Conway-Sloane, p. 106).
Let b(n)=A004403(n), then Sum_{k=1..n} a(k)*b(n-k) = 1. - John W. Layman
Theta series of D_2 lattice.
Number 6 of the 74 eta-quotients listed in Table I of Martin (1996).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
The zeros in this sequence correspond to those integers with an equal number of 4k+1 and 4k+3 divisors, or equivalently to those that have at least one 4k+3 prime factor with an odd exponent (A022544). - Ant King, Mar 12 2013
If A(q) = 1 + 4*q + 4*q^2 + 4*q^4 + 8*q^5 + ... denotes the o.g.f. of this sequence then the function F(q) := 1/4*(A(q^2) - A(q^4)) = ( Sum_{n >= 0} q^(2*n+1)^2 )^2 is the o.g.f. for counting the ways a positive integer n can be written as the sum of two positive odd squares. - Peter Bala, Dec 13 2013
Expansion coefficients of (2/Pi)*K, with the real quarter period K of elliptic functions, as series of the Jacobi nome q, due to (2/Pi)*K = theta_3(0,q)^2. See, e.g., Whittaker-Watson, p. 486. - Wolfdieter Lang, Jul 15 2016
Sum_{k=0..n} a(n) = A057655(n). Robert G. Wilson v, Dec 22 2016
Limit_{n->oo} (a(n)/n - Pi*log(n)) = A062089: Sierpinski's constant. - Robert G. Wilson v, Dec 22 2016
The mean value of a(n) is Pi, see A057655 for more details. - M. F. Hasler, Mar 20 2017

Examples

			G.f. = 1 + 4*q + 4*q^2 + 4*q^4 + 8*q^5 + 4*q^8 + 4*q^9 + 8*q^10 + 8*q^13 + 4*q^16 + 8*q^17 + 4*q^18 + 8*q^20 + 12*q^25 + 8*q^26 + ... . - _John Cannon_, Dec 30 2006
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 162, #16 (7), r(n).
  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 106.
  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 78, Eq. (32.23).
  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 15, p. 32, Lemma 2 (with the proof), p. 116, (9.10) first formula.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 133.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 240, r(n).
  • W. König and J. Sprekels, Karl Weierstraß (1815-1897), Springer Spektrum, Wiesbaden, 2016, p. 186-187 and p. 280-281.
  • C. D. Olds, A. Lax and G. P. Davidoff, The Geometry of Numbers, Math. Assoc. Amer., 2000, p. 51.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 244-245.
  • E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, fourth edition, reprinted, 1958, Cambridge at the University Press.

Crossrefs

Row d=2 of A122141 and of A319574, 2nd column of A286815.
Partial sums - 1 give A014198.
A071385 gives records; A071383 gives where records occur.

Programs

  • Julia
    # JacobiTheta3 is defined in A000122.
    A004018List(len) = JacobiTheta3(len, 2)
    A004018List(102) |> println # Peter Luschny, Mar 12 2018
    
  • Magma
    Basis( ModularForms( Gamma1(4), 1), 100) [1]; /* Michael Somos, Jun 10 2014 */
    
  • Maple
    (sum(x^(m^2),m=-10..10))^2;
    # Alternative:
    A004018list := proc(len) series(JacobiTheta3(0, x)^2, x, len+1);
    seq(coeff(%, x, j), j=0..len-1) end:
    t1 := A004018list(102);
    r2 := n -> t1[n+1]; # Peter Luschny, Oct 02 2018
  • Mathematica
    SquaresR[2,Range[0,110]] (* Harvey P. Dale, Oct 10 2011 *)
    a[ n_] := SquaresR[ 2, n]; (* Michael Somos, Nov 15 2011 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q]^2, {q, 0, n}]; (* Michael Somos, Nov 15 2011 *)
    a[ n_] := With[{m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ EllipticK[ m] / (Pi/2), {q, 0, n}]]; (* Michael Somos, Jun 10 2014 *)
    a[ n_] := If[ n < 1, Boole[n == 0], 4 Sum[ KroneckerSymbol[-4, d], {d, Divisors@n}]]; (* or *) a[ n_] := SeriesCoefficient[ QPochhammer[ q^2]^10/(QPochhammer[ q] QPochhammer[ q^4])^4, {q, 0, n}]; (* Michael Somos, May 17 2015 *)
  • PARI
    {a(n) = polcoeff( 1 + 4 * sum( k=1, n, x^k / (1 + x^(2*k)), x * O(x^n)), n)}; /* Michael Somos, Mar 14 2003 */
    
  • PARI
    {a(n) = if( n<1, n==0, 4 * sumdiv( n, d, (d%4==1) - (d%4==3)))}; /* Michael Somos, Jul 19 2004 */
    
  • PARI
    {a(n) = if( n<1, n==0, 2 * qfrep([ 1, 0; 0, 1], n)[n])}; /* Michael Somos, May 13 2005 */
    
  • PARI
    a(n)=if(n==0,return(1)); my(f=factor(n)); 4*prod(i=1,#f~, if(f[i,1]%4==1, f[i,2]+1, if(f[i,2]%2 && f[i,1]>2, 0, 1))) \\ Charles R Greathouse IV, Sep 02 2015
    
  • Python
    from sympy import factorint
    def a(n):
        if n == 0: return 1
        an = 4
        for pi, ei in factorint(n).items():
           if pi%4 == 1: an *= ei+1
           elif pi%4 == 3 and ei%2: return 0
        return an
    print([a(n) for n in range(102)]) # Michael S. Branicky, Sep 24 2021
    
  • Python
    from math import prod
    from sympy import factorint
    def A004018(n): return prod(1 if p==2 else (e+1 if p&3==1 else (e+1)&1) for p, e in factorint(n).items())<<2 if n else 1 # Chai Wah Wu, Jul 07 2022, corrected Jun 21 2024.
  • Sage
    Q = DiagonalQuadraticForm(ZZ, [1]*2)
    Q.representation_number_list(102) # Peter Luschny, Jun 20 2014
    

Formula

Expansion of theta_3(q)^2 = (Sum_{n=-oo..+oo} q^(n^2))^2 = Product_{m>=1} (1-q^(2*m))^2 * (1+q^(2*m-1))^4; convolution square of A000122.
Factor n as n = p1^a1 * p2^a2 * ... * q1^b1 * q2^b2 * ... * 2^c, where the p's are primes == 1 (mod 4) and the q's are primes == 3 (mod 4). Then a(n) = 0 if any b is odd, otherwise a(n) = 4*(1 + a1)*(1 + a2)*...
G.f. = s(2)^10/(s(1)^4*s(4)^4), where s(k) := subs(q=q^k, eta(q)) and eta(q) is Dedekind's function, cf. A010815. [Fine]
a(n) = 4*A002654(n), n > 0.
Expansion of eta(q^2)^10 / (eta(q) * eta(q^4))^4 in powers of q. - Michael Somos, Jul 19 2004
Expansion of ( phi(q)^2 + phi(-q)^2 ) / 2 in powers of q^2 where phi() is a Ramanujan theta function.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = (u - v)^2 - (v - w) * 4 * w. - Michael Somos, Jul 19 2004
Euler transform of period 4 sequence [4, -6, 4, -2, ...]. - Michael Somos, Jul 19 2004
Moebius transform is period 4 sequence [4, 0, -4, 0, ...]. - Michael Somos, Sep 17 2007
G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = 2 (t/i) f(t) where q = exp(2 Pi i t).
The constant sqrt(Pi)/Gamma(3/4)^2 produces the first 324 terms of the sequence when expanded in base exp(Pi), 450 digits of the constant are necessary. - Simon Plouffe, Mar 03 2011
a(n) = A004531(4*n). a(n) = 2*A105673(n), if n>0.
Let s = 16*q*(E1*E4^2/E2^3)^8 where Ek = Product_{n>=1} (1-q^(k*n)) (s=k^2 where k is elliptic k), then the g.f. is hypergeom([+1/2, +1/2], [+1], s) (expansion of 2/Pi*ellipticK(k) in powers of q). - Joerg Arndt, Aug 15 2011
Dirichlet g.f. Sum_{n>=1} a(n)/n^s = 4*zeta(s)*L_(-4)(s), where L is the D.g.f. of the (shifted) A056594. [Raman. J. 7 (2003) 95-127]. - R. J. Mathar, Jul 02 2012
a(n) = floor(1/(n+1)) + 4*floor(cos(Pi*sqrt(n))^2) - 4*floor(cos(Pi*sqrt(n/2))^2) + 8*Sum_{i=1..floor(n/2)} floor(cos(Pi*sqrt(i))^2)*floor(cos(Pi*sqrt(n-i))^2). - Wesley Ivan Hurt, Jan 09 2013
From Wolfdieter Lang, Aug 01 2016: (Start)
A Jacobi identity: theta_3(0, q)^2 = 1 + 4*Sum_{r>=0} (-1)^r*q^(2*r+1)/(1 - q^(2*r+1)). See, e.g., the Grosswald reference (p. 15, p. 116, but p. 32, Lemma 2 with the proof, has the typo r >= 1 instead of r >= 0 in the sum, also in the proof). See the link with the Jacobi-Legendre letter.
Identity used by Weierstraß (see the König-Sprekels book, p. 187, eq. (5.12) and p. 281, with references, but there F(x) from (5.11) on p. 186 should start with nu =1 not 0): theta_3(0, q)^2 = 1 + 4*Sum_{n>=1} q^n/(1 + q^(2*n)). Proof: similar to the one of the preceding Jacobi identity. (End)
a(n) = (4/n)*Sum_{k=1..n} A186690(k)*a(n-k), a(0) = 1. - Seiichi Manyama, May 27 2017
G.f.: Theta_3(q)^2 = hypergeometric([1/2, 1/2],[1],lambda(q)), with lambda(q) = Sum_{j>=1} A115977(j)*q^j. See the Kontsevich and Zagier link, with Theta -> Theta_3, z -> 2*z and q -> q^2. - Wolfdieter Lang, May 27 2018

A002654 Number of ways of writing n as a sum of at most two nonzero squares, where order matters; also (number of divisors of n of form 4m+1) - (number of divisors of form 4m+3).

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 0, 1, 1, 2, 0, 0, 2, 0, 0, 1, 2, 1, 0, 2, 0, 0, 0, 0, 3, 2, 0, 0, 2, 0, 0, 1, 0, 2, 0, 1, 2, 0, 0, 2, 2, 0, 0, 0, 2, 0, 0, 0, 1, 3, 0, 2, 2, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 1, 4, 0, 0, 2, 0, 0, 0, 1, 2, 2, 0, 0, 0, 0, 0, 2, 1, 2, 0, 0, 4, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 2, 1, 0, 3, 2, 0, 0, 2, 0
Offset: 1

Views

Author

Keywords

Comments

Glaisher calls this E(n) or E_0(n). - N. J. A. Sloane, Nov 24 2018
Number of sublattices of Z X Z of index n that are similar to Z X Z; number of (principal) ideals of Z[i] of norm n.
a(n) is also one fourth of the number of integer solutions of n = x^2 + y^2 (order and signs matter, and 0 (without signs) is allowed). a(n) = N(n)/4, with N(n) from p. 147 of the Niven-Zuckermann reference. See also Theorem 5.12, p. 150, which defines a (strongly) multiplicative function h(n) which coincides with A056594(n-1), n >= 1, and N(n)/4 = sum(h(d), d divides n). - Wolfdieter Lang, Apr 19 2013
a(2+8*N) = A008441(N) gives the number of ways of writing N as the sum of 2 (nonnegative) triangular numbers for N >= 0. - Wolfdieter Lang, Jan 12 2017
Coefficients of Dedekind zeta function for the quadratic number field of discriminant -4. See A002324 for formula and Maple code. - N. J. A. Sloane, Mar 22 2022

Examples

			4 = 2^2, so a(4) = 1; 5 = 1^2 + 2^2 = 2^2 + 1^2, so a(5) = 2.
x + x^2 + x^4 + 2*x^5 + x^8 + x^9 + 2*x^10 + 2*x^13 + x^16 + 2*x^17 + x^18 + ...
2 = (+1)^2 + (+1)^2 = (+1)^2 + (-1)^2  = (-1)^2 + (+1)^2 = (-1)^2 + (-1)^2. Hence there are 4 integer solutions, called N(2) in the Niven-Zuckerman reference, and a(2) = N(2)/4 = 1.  4 = 0^1 + (+2)^2 = (+2)^2 + 0^2 = 0^2 + (-2)^2 = (-2)^2 + 0^2. Hence N(4) = 4 and a(4) = N(4)/4 = 1. N(5) = 8, a(5) = 2. - _Wolfdieter Lang_, Apr 19 2013
		

References

  • J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 194.
  • George Chrystal, Algebra: An elementary text-book for the higher classes of secondary schools and for colleges, 6th ed., Chelsea Publishing Co., New York, 1959, Part II, p. 346 Exercise XXI(17). MR0121327 (22 #12066)
  • Emil Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, p. 15.
  • Ivan Niven and Herbert S. Zuckerman, An Introduction to the Theory of Numbers, New York: John Wiley, 1980, pp. 147 and 150.
  • Günter Scheja and Uwe Storch, Lehrbuch der Algebra, Tuebner, 1988, p. 251.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 89.
  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 340.

Crossrefs

Equals 1/4 of A004018. Partial sums give A014200.
Cf. A002175, A008441, A121444, A122856, A122865, A022544, A143574, A000265, A027748, A124010, A025426 (two squares, order does not matter), A120630 (Dirichlet inverse), A101455 (Mobius transform), A000089, A241011.
If one simply reads the table in Glaisher, PLMS 1884, which omits the zero entries, one gets A213408.
Dedekind zeta functions for imaginary quadratic number fields of discriminants -3, -4, -7, -8, -11, -15, -19, -20 are A002324, A002654, A035182, A002325, A035179, A035175, A035171, A035170, respectively.
Dedekind zeta functions for real quadratic number fields of discriminants 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40 are A035187, A035185, A035194, A035195, A035199, A035203, A035188, A035210, A035211, A035215, A035219, A035192, respectively.

Programs

  • Haskell
    a002654 n = product $ zipWith f (a027748_row m) (a124010_row m) where
       f p e | p `mod` 4 == 1 = e + 1
             | otherwise      = (e + 1) `mod` 2
       m = a000265 n
    -- Reinhard Zumkeller, Mar 18 2013
    
  • Maple
    with(numtheory):
    A002654 := proc(n)
        local count1, count3, d;
        count1 := 0:
        count3 := 0:
        for d in numtheory[divisors](n) do
            if d mod 4 = 1 then
                count1 := count1+1
            elif d mod 4 = 3 then
                count3 := count3+1
            fi:
        end do:
        count1-count3;
    end proc:
    # second Maple program:
    a:= n-> add(`if`(d::odd, (-1)^((d-1)/2), 0), d=numtheory[divisors](n)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Feb 04 2020
  • Mathematica
    a[n_] := Count[Divisors[n], d_ /; Mod[d, 4] == 1] - Count[Divisors[n], d_ /; Mod[d, 4] == 3]; a/@Range[105] (* Jean-François Alcover, Apr 06 2011, after R. J. Mathar *)
    QP = QPochhammer; CoefficientList[(1/q)*(QP[q^2]^10/(QP[q]*QP[q^4])^4-1)/4 + O[q]^100, q] (* Jean-François Alcover, Nov 24 2015 *)
    f[2, e_] := 1; f[p_, e_] := If[Mod[p, 4] == 1, e + 1, Mod[e + 1, 2]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 19 2020 *)
    Rest[CoefficientList[Series[EllipticTheta[3, 0, q]^2/4, {q, 0, 100}], q]] (* Vaclav Kotesovec, Mar 10 2023 *)
  • PARI
    direuler(p=2,101,1/(1-X)/(1-kronecker(-4,p)*X))
    
  • PARI
    {a(n) = polcoeff( sum(k=1, n, x^k / (1 + x^(2*k)), x * O(x^n)), n)}
    
  • PARI
    {a(n) = sumdiv( n, d, (d%4==1) - (d%4==3))}
    
  • PARI
    {a(n) = local(A); A = x * O(x^n); polcoeff( eta(x^2 + A)^10 / (eta(x + A) * eta(x^4 + A))^4 / 4, n)} \\ Michael Somos, Jun 03 2005
    
  • PARI
    a(n)=my(f=factor(n>>valuation(n,2))); prod(i=1,#f~, if(f[i,1]%4==1, f[i,2]+1, (f[i,2]+1)%2)) \\ Charles R Greathouse IV, Sep 09 2014
    
  • PARI
    my(B=bnfinit(x^2+1)); vector(100,n,#bnfisintnorm(B,n)) \\ Joerg Arndt, Jun 01 2024
    
  • Python
    from math import prod
    from sympy import factorint
    def A002654(n): return prod(1 if p == 2 else (e+1 if p % 4 == 1 else (e+1) % 2) for p, e in factorint(n).items()) # Chai Wah Wu, May 09 2022

Formula

Dirichlet series: (1-2^(-s))^(-1)*Product (1-p^(-s))^(-2) (p=1 mod 4) * Product (1-p^(-2s))^(-1) (p=3 mod 4) = Dedekind zeta-function of Z[ i ].
Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m, p)+1)*p^(-s)+Kronecker(m, p)*p^(-2s))^(-1) for m = -16.
If n=2^k*u*v, where u is product of primes 4m+1, v is product of primes 4m+3, then a(n)=0 unless v is a square, in which case a(n) = number of divisors of u (Jacobi).
Multiplicative with a(p^e) = 1 if p = 2; e+1 if p == 1 (mod 4); (e+1) mod 2 if p == 3 (mod 4). - David W. Wilson, Sep 01 2001
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = (u - v)^2 - (v - w) * (4*w + 1). - Michael Somos, Jul 19 2004
G.f.: Sum_{n>=1} ((-1)^floor(n/2)*x^((n^2+n)/2)/(1+(-x)^n)). - Vladeta Jovovic, Sep 15 2004
Expansion of (eta(q^2)^10 / (eta(q) * eta(q^4))^4 - 1)/4 in powers of q.
G.f.: Sum_{k>0} x^k / (1 + x^(2*k)) = Sum_{k>0} -(-1)^k * x^(2*k - 1) / (1 - x^(2*k - 1)). - Michael Somos, Aug 17 2005
a(4*n + 3) = a(9*n + 3) = a(9*n + 6) = 0. a(9*n) = a(2*n) = a(n). - Michael Somos, Nov 01 2006
a(4*n + 1) = A008441(n). a(3*n + 1) = A122865(n). a(3*n + 2) = A122856(n). a(12*n + 1) = A002175(n). a(12*n + 5) = 2 * A121444(n). 4 * a(n) = A004018(n) unless n=0.
a(n) = Sum_{k=1..n} A010052(k)*A010052(n-k). a(A022544(n)) = 0; a(A001481(n)) > 0.
- Reinhard Zumkeller, Sep 27 2008
a(n) = A001826(n) - A001842(n). - R. J. Mathar, Mar 23 2011
a(n) = Sum_{d|n} A056594(d-1), n >= 1. See the above comment on A056594(d-1) = h(d) of the Niven-Zuckerman reference. - Wolfdieter Lang, Apr 19 2013
Dirichlet g.f.: zeta(s)*beta(s) = zeta(s)*L(chi_2(4),s). - Ralf Stephan, Mar 27 2015
G.f.: (theta_3(x)^2 - 1)/4, where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Apr 17 2018
a(n) = Sum_{ m: m^2|n } A000089(n/m^2). - Andrey Zabolotskiy, May 07 2018
a(n) = A053866(n) + 2 * A025441(n). - Andrey Zabolotskiy, Apr 23 2019
a(n) = Im(Sum_{d|n} i^d). - Ridouane Oudra, Feb 02 2020
a(n) = Sum_{d|n} sin((1/2)*d*Pi). - Ridouane Oudra, Jan 22 2021
Sum_{n>=1} (-1)^n*a(n)/n = Pi*log(2)/4 (Covo, 2010). - Amiram Eldar, Apr 07 2022
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/4 = 0.785398... (A003881). - Amiram Eldar, Oct 11 2022
From Vaclav Kotesovec, Mar 10 2023: (Start)
Sum_{k=1..n} a(k)^2 ~ n * (log(n) + C) / 4, where C = A241011 =
4*gamma - 1 + log(2)/3 - 2*log(Pi) + 8*log(Gamma(3/4)) - 12*Zeta'(2)/Pi^2 = 2.01662154573340811526279685971511542645018417752364748061...
The constant C, published by Ramanujan (1916, formula (22)), 4*gamma - 1 + log(2)/3 - log(Pi) + 4*log(Gamma(3/4)) - 12*Zeta'(2)/Pi^2 = 2.3482276258576... is wrong! (End)

A000161 Number of partitions of n into 2 squares.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 2, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 2, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 2, 1, 0, 0, 1, 0, 1, 0
Offset: 0

Views

Author

Keywords

Comments

Number of ways of writing n as a sum of 2 (possibly zero) squares when order does not matter.
Number of similar sublattices of square lattice with index n.
Let Pk = the number of partitions of n into k nonzero squares. Then we have A000161 = P0 + P1 + P2, A002635 = P0 + P1 + P2 + P3 + P4, A010052 = P1, A025426 = P2, A025427 = P3, A025428 = P4. - Charles R Greathouse IV, Mar 08 2010, amended by M. F. Hasler, Jan 25 2013
a(A022544(n))=0; a(A001481(n))>0; a(A125022(n))=1; a(A118882(n))>1. - Reinhard Zumkeller, Aug 16 2011

Examples

			25 = 3^2+4^2 = 5^2, so a(25) = 2.
		

References

  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 339

Crossrefs

Equivalent sequences for other numbers of squares: A010052 (1), A000164 (3), A002635 (4), A000174 (5).

Programs

  • Haskell
    a000161 n =
       sum $ map (a010052 . (n -)) $ takeWhile (<= n `div` 2) a000290_list
    a000161_list = map a000161 [0..]
    -- Reinhard Zumkeller, Aug 16 2011
    
  • Maple
    A000161 := proc(n) local i,j,ans; ans := 0; for i from 0 to n do for j from i to n do if i^2+j^2=n then ans := ans+1 fi od od; RETURN(ans); end; [ seq(A000161(i), i=0..50) ];
    A000161 := n -> nops( numtheory[sum2sqr](n) ); # M. F. Hasler, Nov 23 2007
  • Mathematica
    Length[PowersRepresentations[ #,2,2]] &/@Range[0,150] (* Ant King, Oct 05 2010 *)
  • PARI
    a(n)=sum(i=0,n,sum(j=0,i,if(i^2+j^2-n,0,1))) \\ for illustrative purpose
    
  • PARI
    A000161(n)=sum(k=sqrtint((n-1)\2)+1,sqrtint(n),issquare(n-k^2)) \\ Charles R Greathouse IV, Mar 21 2014, improves earlier code by M. F. Hasler, Nov 23 2007
    
  • PARI
    A000161(n)=#sum2sqr(n) \\ See A133388 for sum2sqr(). - M. F. Hasler, May 13 2018
    
  • Python
    from math import prod
    from sympy import factorint
    def A000161(n):
        f = factorint(n)
        return int(not any(e&1 for e in f.values())) + (((m:=prod(1 if p==2 else (e+1 if p&3==1 else (e+1)&1) for p, e in f.items()))+((((~n & n-1).bit_length()&1)<<1)-1 if m&1 else 0))>>1) if n else 1 # Chai Wah Wu, Sep 08 2022

Formula

a(n) = card { { a,b } c N | a^2+b^2 = n }. - M. F. Hasler, Nov 23 2007
Let f(n)= the number of divisors of n that are congruent to 1 modulo 4 minus the number of its divisors that are congruent to 3 modulo 4, and define delta(n) to be 1 if n is a perfect square and 0 otherwise. Then a(n)=1/2 (f(n)+delta(n)+delta(1/2 n)). - Ant King, Oct 05 2010

A008784 Numbers k such that sqrt(-1) mod k exists; or, numbers that are primitively represented by x^2 + y^2.

Original entry on oeis.org

1, 2, 5, 10, 13, 17, 25, 26, 29, 34, 37, 41, 50, 53, 58, 61, 65, 73, 74, 82, 85, 89, 97, 101, 106, 109, 113, 122, 125, 130, 137, 145, 146, 149, 157, 169, 170, 173, 178, 181, 185, 193, 194, 197, 202, 205, 218, 221, 226, 229, 233, 241, 250, 257, 265, 269, 274, 277, 281, 289
Offset: 1

Views

Author

Keywords

Comments

Numbers whose prime divisors are all congruent to 1 mod 4, with the exception of at most a single factor of 2. - Franklin T. Adams-Watters, Sep 07 2008
In appears that {a(n)} is the set of proper divisors of numbers of the form m^2+1. - Kaloyan Todorov (kaloyan.todorov(AT)gmail.com), Mar 25 2009 [This conjecture is correct. - Franklin T. Adams-Watters, Oct 07 2009]
If a(n) is a term of this sequence, then so too are all of its divisors (Euler). - Ant King, Oct 11 2010
From Richard R. Forberg, Mar 21 2016: (Start)
For a given a(n) > 2, there are 2^k solutions to sqrt(-1) mod n (for some k >= 1), and 2^(k-1) solutions primitively representing a(n) by x^2 + y^2.
Record setting values for the number of solutions (i.e., the next higher k values), occur at values for a(n) given by A006278.
A224450 and A224770 give a(n) values with exactly one and exactly two solutions, respectively, primitively representing integers as x^2 + y^2.
The 2^k different solutions for sqrt(-1) mod n can written as values for j, with j <= n, such that integers r = sqrt(n*j-1). However, the set of j values (listed from smallest to largest) transform into themselves symmetrically (i.e., largest to smallest) when the solutions are written as n-r. When the same 2^k solutions are written as r-j, it is clear that only 2^(k-1) distinct and independent solutions exist. (End)
Lucas uses the fact that there are no multiples of 3 in this sequence to prove that one cannot have an equilateral triangle on the points of a square lattice. - Michel Marcus, Apr 27 2020
For n > 1, terms are precisely the numbers such that there is at least one pair (m,k) where m + k = a(n), and m*k == 1 (mod a(n)), m > 0 and m <= k. - Torlach Rush, Oct 18 2020
A pair (s,t) such that s+t = a(n) and s*t == +1 (mod a(n)) as above is obtained from a square root of -1 (mod a(n)) for s and t = a(n)-s. - Joerg Arndt, Oct 24 2020
The Diophantine equation x^2 + y^2 = z^5 + z with gcd(x, y, z) = 1 has solutions iff z is a term of this sequence. See Gardiner reference, Olympiad links and A340129. - Bernard Schott, Jan 17 2021
Except for 1, numbers of the form a + b + 2*sqrt(a*b - 1) for positive integers a,b such that a*b-1 is a square. - Davide Rotondo, Nov 10 2024

References

  • B. C. Berndt & R. A. Rankin, Ramanujan: Letters and Commentary, see p. 176; AMS Providence RI 1995.
  • J. W. S. Cassels, Rational Quadratic Forms, Cambridge, 1978.
  • Leonard Eugene Dickson, History of the Theory Of Numbers, Volume II: Diophantine Analysis, Chelsea Publishing Company, 1992, pp.230-242.
  • A. Gardiner, The Mathematical Olympiad Handbook: An Introduction to Problem Solving, Oxford University Press, 1997, reprinted 2011, Problem 6 pp. 63 and 167-168 (1985).
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, Ch. 20.2-3.

Crossrefs

Apart from the first term, a subsequence of A000404.

Programs

  • Haskell
    import Data.List.Ordered (union)
    a008784 n = a008784_list !! (n-1)
    a008784_list = 1 : 2 : union a004613_list (map (* 2) a004613_list)
    -- Reinhard Zumkeller, Oct 25 2015
  • Maple
    with(numtheory); [seq(mroot(-1,2,p),p=1..300)];
  • Mathematica
    data=Flatten[FindInstance[x^2+y^2==# && 0<=x<=# && 0<=y<=# && GCD[x,y]==1,{x,y},Integers]&/@Range[289],1]; x^2+y^2/.data//Union (* Ant King, Oct 11 2010 *)
    Select[Range[289], And @@ (Mod[#, 4] == 1 & ) /@ (fi = FactorInteger[#]; If[fi[[1]] == {2, 1}, Rest[fi[[All, 1]]], fi[[All, 1]]])&] (* Jean-François Alcover, Jul 02 2012, after Franklin T. Adams-Watters *)
  • PARI
    is(n)=if(n%2==0,if(n%4,n/=2,return(0)));n==1||vecmax(factor(n)[,1]%4)==1 \\ Charles R Greathouse IV, May 10 2012
    
  • PARI
    list(lim)=my(v=List([1,2]),t); lim\=1; for(x=2,sqrtint(lim-1), t=x^2; for(y=0,min(x-1,sqrtint(lim-t)), if(gcd(x,y)==1, listput(v,t+y^2)))); Set(v) \\ Charles R Greathouse IV, Sep 06 2016
    
  • PARI
    for(n=1,300,if(issquare(Mod(-1, n)),print1(n,", "))); \\ Joerg Arndt, Apr 27 2020
    

Extensions

Checked by T. D. Noe, Apr 19 2007

A020757 Numbers that are not the sum of two triangular numbers.

Original entry on oeis.org

5, 8, 14, 17, 19, 23, 26, 32, 33, 35, 40, 41, 44, 47, 50, 52, 53, 54, 59, 62, 63, 68, 71, 74, 75, 77, 80, 82, 85, 86, 89, 95, 96, 98, 103, 104, 107, 109, 113, 116, 117, 118, 122, 124, 125, 128, 129, 131, 134, 138, 140, 143, 145, 147, 149, 152, 155, 158, 161, 162, 166, 167
Offset: 1

Views

Author

Keywords

Comments

A052343(a(n)) = 0. - Reinhard Zumkeller, May 15 2006
Numbers of the form (p^(2k+1)s-1)/4, where p is a prime number of the form 4n+3, and s is a number of the form 4m+3 and prime to p, are not expressible as the sum of two triangular numbers. See Satyanarayana (1961), Theorem 2. - Hans J. H. Tuenter, Oct 11 2009
An integer n is in this sequence if and only if at least one 4k+3 prime factor in the canonical form of 4n+1 occurs with an odd exponent. - Ant King, Dec 02 2010
A nonnegative integer n is in this sequence if and only if A000729(n) = 0. - Michael Somos, Feb 13 2011
4*a(n) + 1 are terms of A022544. - XU Pingya, Aug 05 2018 [Actually, k is here if and only if 4*k + 1 is in A022544. - Jianing Song, Feb 09 2021]
Integers m such that the smallest number of triangular numbers which sum to m is 3, hence A061336(a(n)) = 3. - Bernard Schott, Jul 21 2022

Examples

			3 = 0 + 3 and 7 = 1 + 6 are not terms, but 8 = 1 + 1 + 6 is a term.
		

Crossrefs

Complement of A020756.
Numbers k such that the coefficient of x^k in the expansion of Product_{j>=1} (1 - x^j)^m is zero: A090864 (m=1), A213250 (m=2), A014132 (m=3), A302056 (m=4), A302057 (m=5), this sequence (m=6), A322430 (m=8), A322431 (m=10), A322432 (m=14), A322043 (m=15), A322433 (m=26).

Programs

  • Haskell
    a020757 n = a020757_list !! (n-1)
    a020757_list = filter ((== 0) . a052343) [0..]
    -- Reinhard Zumkeller, Jul 25 2014
    
  • Mathematica
    data = Reduce[m (m + 1) + n (n + 1) == 2 # && 0 <= m && 0 <= n, {m, n}, Integers] & /@ Range[167]; Position[data, False] // Flatten  (* Ant King, Dec 05 2010 *)
    t = Array[PolygonalNumber, 18, 0]; Complement[Range@ 169, Flatten[ Outer[ Plus, t, t]]] (* Robert G. Wilson v, Aug 07 2024 *)
  • PARI
    is(n)=my(m9=n%9,f); if(m9==5 || m9==8, return(1)); f=factor(4*n+1); for(i=1,#f~, if(f[i,1]%4==3 && f[i,2]%2, return(1))); 0 \\ Charles R Greathouse IV, Mar 17 2022

A000925 Number of ordered ways of writing n as a sum of 2 squares of nonnegative integers.

Original entry on oeis.org

1, 2, 1, 0, 2, 2, 0, 0, 1, 2, 2, 0, 0, 2, 0, 0, 2, 2, 1, 0, 2, 0, 0, 0, 0, 4, 2, 0, 0, 2, 0, 0, 1, 0, 2, 0, 2, 2, 0, 0, 2, 2, 0, 0, 0, 2, 0, 0, 0, 2, 3, 0, 2, 2, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 2, 4, 0, 0, 2, 0, 0, 0, 1, 2, 2, 0, 0, 0, 0, 0, 2, 2, 2, 0, 0, 4, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 2, 1, 0, 4
Offset: 0

Views

Author

Jacques Haubrich (jhaubrich(AT)freeler.nl)

Keywords

References

  • A. Das and A. C. Melissinos, Quantum Mechanics: A Modern Introduction, Gordon and Breach, 1986, p. 47.
  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985.

Crossrefs

Programs

  • Haskell
    a000925 n = sum $ map (a010052 . (n -)) $ takeWhile (<= n) a000290_list
    -- Reinhard Zumkeller, Sep 14 2014
  • Mathematica
    a[n_] := (pr = PowersRepresentations[n, 2, 2]; Count[Union[Join[pr, Reverse /@ pr]], {j_ /; j >= 0, k_ /; k >= 0}]); a /@ Range[0, 100] (* Jean-François Alcover, Apr 05 2011 *)
    nn = 100; t = CoefficientList[Series[Sum[x^k^2, {k, 0, Sqrt[nn]}]^2, {x, 0, nn}], x] (* T. D. Noe, Apr 05 2011 *)
    SquareQ[n_] := IntegerQ[Sqrt[n]]; Table[Count[FrobeniusSolve[{1, 1}, n], {?SquareQ}], {n, 0, 100}] (* Robert G. Wilson v, Apr 15 2017 *)
  • PARI
    a(n)=sum(i=0,n,sum(j=0,n,if(i^2+j^2-n,0,1)))
    

Formula

Coefficient of q^k in (1/4)*(1 + theta_3(0, q))^2.
a(A001481(n))>0; a(A022544(n))=0. - Benoit Cloitre, Apr 20 2003
Showing 1-10 of 59 results. Next