cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A070190 Expansion of e.g.f. I_0(2*x)^5 + 2*Sum_{k>=1} I_k(2*x)^5, where I_n(z) are modified Bessel functions of order n.

Original entry on oeis.org

1, 0, 10, 0, 270, 240, 10900, 25200, 551950, 2116800, 32458860, 169092000, 2120787900, 13427013600, 149506414200, 1075081207200, 11143223412750, 87198375264000, 865743970019500, 7171730187336000, 69416724049550020
Offset: 0

Views

Author

Karol A. Penson, Apr 26 2002

Keywords

Comments

A modification of e.g.f. of A002898, where the exponent of I, which is 3, is here replaced by 5.
U_10(n), in Labelle-Lacasse paper, number of closed paths of length n whose steps are 10th roots of unity.

Crossrefs

Cf. A002898.

Programs

  • Mathematica
    With[{nmax = 25}, CoefficientList[Series[BesselI[0, 2*x]^5 + 2*Sum[BesselI[k, 2*x]^5, {k, 1, 2*nmax}], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Nov 05 2018 *)
  • PARI
    seq(n)={Vec(serlaplace(sum(k=0, n, if(k,2,1)*(x^k*besseli(k, 2*x + O(x^(n-k+1)))/k!)^5)))} \\ Andrew Howroyd, Nov 01 2018

Formula

a(n) ~ 5^(3/2) * 10^n / (4*Pi^2*n^2). - Vaclav Kotesovec, Jun 08 2021