cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A335200 Positions of difference 12 in A070195.

Original entry on oeis.org

2, 14, 31, 47, 78, 83, 229, 242, 278, 294, 312, 341, 345, 350, 381, 401, 429, 441, 476, 617, 783, 796, 800, 812, 825, 849, 911, 921, 931, 940, 1054, 1087, 1103, 1142, 1146, 1210, 1291, 1340, 1391, 1397, 1447, 1556, 1594, 1804, 1828, 1855, 1857, 1877, 1953
Offset: 1

Views

Author

Zak Seidov, May 26 2020

Keywords

Comments

12 is the minimal difference in A070195.

Examples

			A070195(2) = A070195(3) - 12, or 30 = 42 - 12, so 2 is a term.
A070195(14) = A070195(15) - 12, or 1290 = 1302 - 12, so 14 is a term.
		

Crossrefs

Cf. A070195.

Programs

  • Mathematica
    Position[Differences @ Select[Range[10^6], SquareFreeQ[#] && And @@ PrimeQ[# + {-1, 1}] &], 12] //Flatten (* Amiram Eldar, May 27 2020 *)

A078579 Squarefree kernel of the average of n-th twin prime pair.

Original entry on oeis.org

2, 6, 6, 6, 30, 42, 30, 6, 102, 6, 138, 30, 30, 6, 66, 114, 30, 30, 282, 78, 174, 210, 6, 462, 174, 570, 30, 618, 642, 330, 30, 822, 138, 858, 42, 510, 258, 210, 354, 546, 6, 1230, 426, 1290, 1302, 330, 714, 66, 1482, 186, 402, 30, 834, 1698, 1722, 894, 78
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 29 2002

Keywords

Crossrefs

Programs

  • Mathematica
    midQ[n_] := PrimeQ[n-1] && PrimeQ[n+1]; f[n_] := Times @@ FactorInteger[n][[;;,1]]; f /@ Select[Range[2000], midQ] (* Amiram Eldar, Nov 03 2019 *)

Formula

a(n) = A007947(A014574(n)).
a(A070195(n)) = A070195(n).

A354950 The number of squarefree numbers whose largest prime divisor is prime(n) and that are averages of twin prime pairs.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 3, 7, 4, 9, 20, 31, 57, 88, 139, 282, 421, 806, 1397, 2572, 4440, 7863, 14580, 26211, 47727, 86929, 159972, 292650, 542477, 1000087, 1850347, 3432551, 6381199
Offset: 1

Views

Author

Amiram Eldar, Jun 13 2022

Keywords

Examples

			n  prime(n)  a(n)  terms k of A070195 with A006530(k) = prime(n)
-  --------  ----  ---------------------------------------------
1   2        0     -
2   3        1     6
3   5        1     30
4   7        1     42
5  11        2     462, 2310
6  13        2     858, 2730
7  17        3     102, 9282, 102102
8  19        7     570, 1482, 6270, 21318, 43890, 51870, 1939938
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Count[Prime[n] * Divisors[Product[Prime[i], {i, 1, n - 1}]], _?(PrimeQ[# - 1] && PrimeQ[# + 1] &)]; Array[a, 10]
  • Python
    from math import prod
    from itertools import combinations
    from sympy import primerange, prime, isprime
    def A354950(n):
        plist = list(primerange(2,p:=prime(n)))
        return sum(1 for l in range(1,n) for d in combinations(plist,l) if isprime((q:= prod(d)*p)-1) and isprime(q+1)) # Chai Wah Wu, Jun 14 2022

Formula

Conjecture: Limit_{n->oo} log(a(n))/(n*log(n)) = c ~ 0.13... .
Showing 1-3 of 3 results.