A070214 Maximal number of occupied cells in all monotonic matrices of order n.
1, 2, 5, 8, 11, 14, 19, 23, 28, 32, 38, 43, 49, 55
Offset: 1
Examples
a(3) >= 5 from this matrix: 2 - 3 - - 1 1 3 - a(5) >= 11 from this matrix: - - 4 - 5 4 - - 5 - - - 1 2 3 3 5 - - - 1 2 - - - Dean Hickerson found the following matrix, which improves the lower bound for a(8) to 23: (This is now known to be optimal) - - 2 - - 4 7 8 - - 1 7 8 - - - 7 8 - - - - - - - 2 - 4 - - - 6 - 1 - - - 3 6 - 4 - - - 6 - - - 2 - - - 3 - - 5 1 - - 3 - - 5 - Paul Jungeblut improves the lower bound for a(11) to 38 with this matrix. -- -- 8 -- -- -- 9 -- -- -- 11 -- 8 -- -- -- 9 -- -- -- -- 10 8 -- -- -- 9 -- -- -- 10 11 -- -- -- -- -- -- -- -- -- 4 5 7 -- 4 -- -- -- 5 7 11 -- -- -- -- -- -- -- -- 1 -- -- 2 3 6 4 -- -- -- 5 -- 6 10 -- -- -- -- -- -- -- 1 -- 2 3 -- -- -- 2 3 7 11 -- -- -- -- -- -- -- -- 1 6 10 -- -- -- -- -- -- -- 1 -- 5 9 -- -- -- -- -- -- --
Links
- Boris Aronov, Vida Dujmović, Pat Morin, Aurélien Ooms, Luís Fernando Schultz Xavier da Silveira, More Turán-Type Theorems for Triangles in Convex Point Sets, arXiv:1706.10193 [math.CO], 2017.
- W. Hamaker and S. K. Stein, Combinatorial packing of R^3 by certain error spheres, IEEE Trans. Information Theory, 30 (No. 2, 1984), 364-368.
- Patric R. J. Östergård, and Antti Pöllänen, New Results on Tripod Packings, Discrete & Computational Geometry 61.2 (2019): 271-284
- S. K. Stein and S. Szabo, Algebra and Tiling, MAA Carus Monograph 25, 1994, page 95.
- Alexandre Tiskin, Tripods do not pack densely, Lecture Notes in Computer Science, 1858 (2000), 272-280.
- Alexandre Tiskin, Packing tripods: narrowing the density gap, Discrete Math., 307 (2007), 1973-1981.
- Eric Weisstein's World of Mathematics, Monotonic Matrix
Crossrefs
Cf. A086976.
Formula
a(r*s) >= a(r)*a(s); if a(n) = n^e(n) then L := lim_{n->infinity} e(n) exists and is in the range 1.513 <= L <= 2.
Tiskin showed that a(n) = o(n^2).
Extensions
a(1)-a(5) computed by K. Joy. a(6) = 14 was established by Szabo.
Jul 27 2003 - Aug 23 2003: Rob Pratt has used integer programming to confirm the values for n <= 6 and has shown that a(7) = 19, 23 <= a(8) <= 28, 28 <= a(9) <= 42 and 32 <= a(10) <= 62.
Extended to a(14) from Tiskin (2007), who gives a(15) >= 61, a(16) >= 65.
a(11) corrected by Paul Jungeblut, Jul 09 2020
Comments