cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A070260 Third diagonal of triangle defined in A051537.

Original entry on oeis.org

3, 2, 15, 6, 35, 12, 63, 20, 99, 30, 143, 42, 195, 56, 255, 72, 323, 90, 399, 110, 483, 132, 575, 156, 675, 182, 783, 210, 899, 240, 1023, 272, 1155, 306, 1295, 342, 1443, 380, 1599, 420, 1763, 462, 1935, 506, 2115, 552, 2303, 600, 2499, 650, 2703, 702
Offset: 1

Views

Author

Amarnath Murthy, May 09 2002

Keywords

Crossrefs

Bisections: A002378, A000466.
Cf. A051537.

Programs

  • Mathematica
    Table[ LCM[i + 2, i] / GCD[i + 2, i], {i, 1, 60}]
    LinearRecurrence[{0,3,0,-3,0,1},{3,2,15,6,35,12},60] (* Harvey P. Dale, Sep 14 2019 *)
  • PARI
    Vec(x*(3+2*x+6*x^2-x^4) / (1-x^2)^3 + O(x^60)) \\ Colin Barker, Mar 27 2017

Formula

From Vladeta Jovovic, May 09 2002: (Start)
a(n) = n*(n+2)/4 if n is even else n*(n+2).
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6).
G.f.: x*(3 + 2*x + 6*x^2 - x^4)/(1 - x^2)^3. (End)
E.g.f.: (x/4)*((12 + x)*cosh(x) + (3 + 4*x)*sinh(x)). - G. C. Greubel, Jul 20 2017
From Amiram Eldar, Oct 08 2023: (Start)
Sum_{n>=1} 1/a(n) = 3/2.
Sum_{n>=1} (-1)^n/a(n) = 1/2.
Sum_{k=1..n} a(k) ~ (5/24) * n^3. (End)

Extensions

More terms from Vladeta Jovovic, May 09 2002