cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A070305 Numbers m such that Card(k>0 : phi(k)=phi(m)) = tau(m).

Original entry on oeis.org

2, 4, 8, 10, 11, 14, 16, 23, 27, 28, 29, 31, 32, 38, 47, 53, 59, 64, 67, 71, 79, 83, 86, 100, 103, 107, 114, 125, 127, 128, 131, 136, 137, 139, 147, 149, 151, 167, 170, 172, 173, 176, 179, 191, 197, 199, 202, 211, 223, 227, 229, 235, 239, 251, 256, 263, 265, 269
Offset: 1

Views

Author

Benoit Cloitre, May 10 2002

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn = 300}, Function[s, DeleteCases[MapIndexed[If[DivisorSigma[0, First@ #2] == #1, First@ #2, 0] &, Take[#, nn]], 0] &@ Values@ KeySort@ Flatten@ Map[Function[{k, m}, Map[# -> m &, k]] @@ {#, Length@ #} &@ Lookup[s, #] &, Keys@ s]]@ KeySort@ PositionIndex@ Array[EulerPhi, Floor[nn^(4/3)] + 10]] (* Michael De Vlieger, Jul 18 2017 *)
  • PARI
    for(n=1,350,if(sum(i=1,10*n,if(eulerphi(n)-eulerphi(i),0,1))==numdiv(n),print1(n,","))) \\ By the original author. Note: the upper limit 10*n for the search range is quite ad hoc, and is guaranteed to miss some cases when n is large enough. Cf. Wikipedia-article. - Antti Karttunen, Jul 19 2017
    
  • PARI
    \\ Here is an implementation not using arbitrary limits:
    A014197(n, m=1) = { n==1 && return(1+(m<2)); my(p, q); sumdiv(n, d, if( d>=m && isprime(d+1), sum( i=0, valuation(q=n\d, p=d+1), A014197(q\p^i, p))))} \\ M. F. Hasler, Oct 05 2009
    
  • PARI
    A066412(n) = A014197(eulerphi(n));
    isA070305(n) = (A066412(n) == numdiv(n));
    n=0; k=1; while(k <= 1000, n=n+1; if(isA070305(n),write("b070305.txt", k, " ", n);k=k+1)); \\ Antti Karttunen, Jul 19 2017
    
  • PARI
    is(m) = {my(f = factor(m)); invphiNum(eulerphi(f)) == numdiv(f);} \\ Amiram Eldar, Nov 19 2024, using Max Alekseyev's invphi.gp
    
  • Scheme
    ;; With my IntSeq-library.
    (define A070305 (MATCHING-POS 1 1 (lambda (n) (= (A066412 n) (A000005 n))))) ;; Antti Karttunen, Jul 18 2017

Formula

Numbers k such that A066412(k) = A000005(k).