cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A070323 Let M_n be the n X n matrix m(i,j) = min(prime(i), prime(j)); then a(n) = det(M_n).

Original entry on oeis.org

2, 2, 4, 8, 32, 64, 256, 512, 2048, 12288, 24576, 147456, 589824, 1179648, 4718592, 28311552, 169869312, 339738624, 2038431744, 8153726976, 16307453952, 97844723712, 391378894848, 2348273369088, 18786186952704, 75144747810816
Offset: 1

Views

Author

Benoit Cloitre, May 11 2002

Keywords

Comments

If A_n is the n X n matrix a(i,j) = Max(prime(i), prime(j)) then det(A_n)/det(M_n) = prime(n)/2.

Crossrefs

Programs

  • Mathematica
    a[n_] := 2*Product[Differences[Prime[Range[100]]][[i]], {i, 1, n - 1}]; Table[a[n], {n, 1, 30}] (* Luca Onnis, Aug 13 2022 *)
  • PARI
    a(n) = matdet(matrix(n, n, i, j, min(prime(i), prime(j)))); \\ Michel Marcus, Aug 13 2022

Formula

a(n) = 2*A037169(n)/prime(n) for n > 1.
a(n) = 2*Product_{i=1..n-1} A001223(i) for n > 1. - Luca Onnis, Aug 13 2022
a(n) = 2 * A081411(n-1) for n >= 2. - Alois P. Heinz, Aug 17 2022