cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A070333 Expansion of (1 + x)*(1 - x + x^2)/((1 - x)^4*(1 + x + x^2)).

Original entry on oeis.org

1, 3, 6, 12, 21, 33, 50, 72, 99, 133, 174, 222, 279, 345, 420, 506, 603, 711, 832, 966, 1113, 1275, 1452, 1644, 1853, 2079, 2322, 2584, 2865, 3165, 3486, 3828, 4191, 4577, 4986, 5418, 5875, 6357, 6864, 7398, 7959, 8547, 9164, 9810, 10485
Offset: 0

Views

Author

N. J. A. Sloane, May 11 2002

Keywords

Comments

a(n) is the number of 3 X 3 matrices with nonnegative integer entries such that every row sum, column sum and the trace of the matrix is n. - Sharon Sela (sharonsela(AT)hotmail.com), May 20 2002

Crossrefs

Programs

  • Magma
    [Round((2*n+3)*(n^2+3*n+6)/18): n in [0..50]]; // Vincenzo Librandi, Jun 25 2011
    
  • Maple
    A049347 := proc(n) op(1+(n mod 3),[1,-1,0]) ; end proc:
    A070333 := proc(n) 1+7*n/6+n^2/2+n^3/9+2*A049347(n-1)/9 ; end proc: # R. J. Mathar, Dec 03 2010
  • Mathematica
    CoefficientList[ Series[(1 + x^3)/(1 - 3*x + 3*x^2 - 2*x^3 + 3*x^4 - 3*x^5 + x^6), {x, 0, 45}], x]
  • PARI
    Vec((1+x)*(1-x+x^2)/((1-x)^4*(1+x+x^2))+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012

Formula

a(n) = 1 + 7*n/6 + n^2/2 + n^3/9 + 2*A049347(n-1)/9. - R. J. Mathar, Dec 03 2010
From Mircea Merca, Dec 03 2010: (Start)
a(n) = round((2*n + 3)*(n^2 + 3*n + 6)/18).
a(n) = floor((n + 2)*(2*n^2 + 5*n + 11)/18).
a(n) = ceiling((n + 1)*(2*n^2 + 7*n + 14)/18).
a(n) = round((n + 1)*(2*n^2 + 7*n + 14)/18).
a(n) = a(n-3) + n^2 + 2 for n > 2. (End)
E.g.f.: exp(x)*(1 + x*(32 + x*(15 + 2*x))/18) + 4*exp(-x/2)*sin(sqrt(3)*x/2)/(9*sqrt(3)). - Stefano Spezia, Oct 28 2022