A070335 a(n) = 2^n mod 23.
1, 2, 4, 8, 16, 9, 18, 13, 3, 6, 12, 1, 2, 4, 8, 16, 9, 18, 13, 3, 6, 12, 1, 2, 4, 8, 16, 9, 18, 13, 3, 6, 12, 1, 2, 4, 8, 16, 9, 18, 13, 3, 6, 12, 1, 2, 4, 8, 16, 9, 18, 13, 3, 6, 12, 1, 2, 4, 8, 16, 9, 18, 13, 3, 6, 12, 1, 2, 4, 8, 16, 9, 18, 13, 3, 6, 12, 1, 2, 4
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).
Programs
-
GAP
a:=List([0..70],n->PowerMod(2,n,23));; Print(a); # Muniru A Asiru, Jan 26 2019
-
Maple
A070335 := proc(n) op(1+(n mod 11),[1,2,4,8,16,9,18,13,3,6,12]) ; end proc: # R. J. Mathar, Feb 05 2011
-
Mathematica
PowerMod[2, Range[0, 50], 23] (* G. C. Greubel, Mar 13 2016 *)
-
PARI
a(n)=lift(Mod(2,23)^n) \\ Charles R Greathouse IV, Apr 06 2016
-
Sage
[power_mod(2,n,23) for n in range(0,80)] # Zerinvary Lajos, Nov 03 2009
Formula
From R. J. Mathar, Apr 13 2010: (Start)
a(n) = a(n-11).
G.f.: (1 + 2*x + 4*x^2 + 8*x^3 + 16*x^4 + 9*x^5 + 18*x^6 + 13*x^7 + 3*x^8 + 6*x^9 + 12*x^10)/ ((1-x) * (1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10)). (End)