A070336 a(n) = 2^n mod 25.
1, 2, 4, 8, 16, 7, 14, 3, 6, 12, 24, 23, 21, 17, 9, 18, 11, 22, 19, 13, 1, 2, 4, 8, 16, 7, 14, 3, 6, 12, 24, 23, 21, 17, 9, 18, 11, 22, 19, 13, 1, 2, 4, 8, 16, 7, 14, 3, 6, 12, 24, 23, 21, 17, 9, 18, 11, 22, 19, 13, 1, 2, 4, 8, 16, 7, 14, 3, 6, 12, 24, 23, 21, 17
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1).
Programs
-
GAP
a:=List([0..70],n->PowerMod(2,n,25));; Print(a); # Muniru A Asiru, Jan 28 2019
-
Mathematica
PowerMod[2,Range[0,75],25] (* or *) LinearRecurrence[ {1,0,0,0,0,0,0,0,0,-1,1},{1,2,4,8,16,7,14,3,6,12,24}, 75] (* Harvey P. Dale, Jun 20 2011 *)
-
PARI
a(n)=lift(Mod(2,25)^n) \\ Charles R Greathouse IV, Mar 22 2016
-
Sage
[power_mod(2,n,25)for n in range(0,74)] # Zerinvary Lajos, Nov 03 2009
Formula
From R. J. Mathar, Apr 13 2010: (Start)
a(n) = a(n-1) - a(n-10) + a(n-11).
G.f.: (1+x+2*x^2+4*x^3+8*x^4-9*x^5+7*x^6 -11*x^7+3*x^8+6*x^9+13*x^10)/ ((1-x) * (x^ 2+1) * (x^8-x^6+x^4-x^2+1)). (End)
a(n) = a(n-20). - Franz Vrabec, Dec 06 2011