A070361 a(n) = 3^n mod 41.
1, 3, 9, 27, 40, 38, 32, 14, 1, 3, 9, 27, 40, 38, 32, 14, 1, 3, 9, 27, 40, 38, 32, 14, 1, 3, 9, 27, 40, 38, 32, 14, 1, 3, 9, 27, 40, 38, 32, 14, 1, 3, 9, 27, 40, 38, 32, 14, 1, 3, 9, 27, 40, 38, 32, 14, 1, 3, 9, 27, 40, 38, 32, 14, 1, 3, 9, 27, 40, 38, 32, 14, 1, 3, 9, 27, 40, 38, 32
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,-1,1).
Crossrefs
Cf. A000244.
Programs
-
Mathematica
PowerMod[3, Range[0,50], 41] (* or *) Table[Mod[3^n, 41], {n, 0, 100}] (* G. C. Greubel, Mar 09 2016 *) LinearRecurrence[{1,0,0,-1,1},{1,3,9,27,40},100] (* Harvey P. Dale, Mar 27 2020 *)
-
PARI
a(n)=lift(Mod(3,41)^n) \\ Charles R Greathouse IV, Mar 22 2016
Formula
G.f.: (1+2*x+6*x^2+18*x^3+14*x^4)/ ((1-x) * (1+x^4)). - R. J. Mathar, Mar 13 2010
a(n) = a(n-2)+a(n-6)-a(n-4). - Vincenzo Librandi, Feb 06 2011
a(n) = a(n-8). - G. C. Greubel, Mar 09 2016