A070367 a(n) = 5^n mod 11.
1, 5, 3, 4, 9, 1, 5, 3, 4, 9, 1, 5, 3, 4, 9, 1, 5, 3, 4, 9, 1, 5, 3, 4, 9, 1, 5, 3, 4, 9, 1, 5, 3, 4, 9, 1, 5, 3, 4, 9, 1, 5, 3, 4, 9, 1, 5, 3, 4, 9, 1, 5, 3, 4, 9, 1, 5, 3, 4, 9, 1, 5, 3, 4, 9, 1, 5, 3, 4, 9, 1, 5, 3, 4, 9, 1, 5, 3, 4, 9, 1, 5, 3, 4, 9, 1, 5, 3, 4, 9, 1, 5, 3, 4, 9, 1, 5, 3, 4, 9, 1
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,1).
Crossrefs
Cf. A000351.
Programs
-
Magma
&cat[[1,5,3,4,9]^^20]; // Vincenzo Librandi, Mar 06 2016
-
Mathematica
Table[Mod[5^n, 11], {n, 0, 100}] (* G. C. Greubel, Mar 05 2016 *)
-
PARI
a(n)=lift(Mod(5,11)^n) \\ Charles R Greathouse IV, Mar 22 2016
-
Sage
[power_mod(5,n,11)for n in range(0,101)] # Zerinvary Lajos, Nov 25 2009
Formula
From R. J. Mathar, Apr 20 2010: (Start)
a(n) = a(n-5).
G.f.: ( -1-5*x-3*x^2-4*x^3-9*x^4 ) / ( (x-1)*(1+x+x^2+x^3+x^4) ). (End)
Comments