A070392 a(n) = 6^n mod 11.
1, 6, 3, 7, 9, 10, 5, 8, 4, 2, 1, 6, 3, 7, 9, 10, 5, 8, 4, 2, 1, 6, 3, 7, 9, 10, 5, 8, 4, 2, 1, 6, 3, 7, 9, 10, 5, 8, 4, 2, 1, 6, 3, 7, 9, 10, 5, 8, 4, 2, 1, 6, 3, 7, 9, 10, 5, 8, 4, 2, 1, 6, 3, 7, 9, 10, 5, 8, 4, 2, 1, 6, 3, 7, 9, 10, 5, 8, 4, 2, 1, 6, 3, 7
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,-1,1). - _R. J. Mathar_, Apr 20 2010
Programs
-
Maple
A070392:=n->(6^n mod 11); seq(A070392(n), n=0..100); # Wesley Ivan Hurt, May 19 2014
-
Mathematica
Table[Mod[6^n, 11], {n, 0, 100}] (* Wesley Ivan Hurt, May 19 2014 *) PowerMod[6, Range[0, 50], 11] (* G. C. Greubel, Mar 18 2016 *)
-
PARI
a(n)=6^n%11 \\ Charles R Greathouse IV, Oct 07 2015
-
PARI
a(n) = lift(Mod(6, 11)^n); \\ Altug Alkan, Mar 18 2016
-
Sage
[power_mod(6,n,11)for n in range(0,99)] # Zerinvary Lajos, Nov 26 2009
Formula
From R. J. Mathar, Apr 20 2010: (Start)
a(n) = a(n-1) - a(n-5) + a(n-6).
G.f.: ( -1-5*x+3*x^2-4*x^3-2*x^4-2*x^5 )/((x-1)*(1+x)(x^4-x^3+x^2-x+1) ). (End)
a(n) = a(n-10). - G. C. Greubel, Mar 18 2016
Comments