A070472 a(n) = n^3 mod 7.
0, 1, 1, 6, 1, 6, 6, 0, 1, 1, 6, 1, 6, 6, 0, 1, 1, 6, 1, 6, 6, 0, 1, 1, 6, 1, 6, 6, 0, 1, 1, 6, 1, 6, 6, 0, 1, 1, 6, 1, 6, 6, 0, 1, 1, 6, 1, 6, 6, 0, 1, 1, 6, 1, 6, 6, 0, 1, 1, 6, 1, 6, 6, 0, 1, 1, 6, 1, 6, 6, 0, 1, 1, 6, 1, 6, 6, 0, 1, 1, 6, 1, 6, 6, 0, 1, 1, 6, 1, 6, 6, 0, 1, 1, 6, 1, 6, 6, 0, 1, 1
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 1).
Programs
-
Magma
[Modexp(n, 3, 7 ): n in [0..100]]; // Vincenzo Librandi, Mar 27 2016
-
Mathematica
PowerMod[Range[0,120],3,7] (* or *) LinearRecurrence[{0,0,0,0,0,0,1},{0,1,1,6,1,6,6},120] (* or *) PadRight[{},120,{0,1,1,6,1,6,6}] (* Harvey P. Dale, Nov 29 2013 *)
-
PARI
a(n)=n^3%7 \\ Charles R Greathouse IV, Apr 06 2016
-
Sage
[power_mod(n,3,7 ) for n in range(0, 101)] # Zerinvary Lajos, Oct 29 2009
Formula
a(n) = a(n-7).
G.f.: x*(1 + x + 6*x^2 + x^3 + 6*x^4 + 6*x^5)/(1-x^7). - Vincenzo Librandi, Mar 27 2016
Comments