cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A070543 Triangular array read by rows: T(n,k) = number of k-dimensional isotropic subspaces of Spin(2n+1,C), n >= 1, 1 <= k <= n.

Original entry on oeis.org

1, 3, 3, 5, 7, 6, 7, 11, 12, 10, 9, 15, 18, 18, 15, 11, 19, 24, 26, 25, 21, 13, 23, 30, 34, 35, 33, 28, 15, 27, 36, 42, 45, 45, 42, 36, 17, 31, 42, 50, 55, 57, 56, 52, 45, 19, 35, 48, 58, 65, 69, 70, 68, 63, 55, 21, 39, 54, 66, 75, 81, 84, 84, 81, 75, 66, 23, 43, 60, 74, 85, 93
Offset: 1

Views

Author

Michael Somos, Apr 28 2002

Keywords

Examples

			Rows:
   1;
   3,  3;
   5,  7,  6;
   7, 11, 12, 10;
   9, 15, 18, 18, 15;
  11, 19, 24, 26, 25, 21;
  ...
		

Crossrefs

Cf. A141419.

Programs

  • GAP
    Flat(List([1..12], n-> List([1..n], k-> k*(k+1 + 4*(n-k))/2 ))); # G. C. Greubel, Sep 05 2019
  • Magma
    [k*(k+1 + 4*(n-k))/2: k in [1..n], n in [1..12]]; // G. C. Greubel, Sep 05 2019
    
  • Maple
    T:=(n,k) -> k*(k+1)/2+2*k*(n-k); r:=n->[seq(T(n,k),k=1..n)]; for r from 1 to 12 do lprint(r(n)); od: # N. J. A. Sloane, Aug 21 2019
  • Mathematica
    nmax = 12; t[n_, k_] := If[k < 1 || k > n, 0, k*(k+1)/2 + 2*k*(n-k)]; Flatten[ Table[t[n , k], {n, 1, nmax}, {k, 1, n}]] (* Jean-François Alcover, Oct 19 2011, after PARI *)
  • PARI
    {T(n, k) = if( k<1 || k>n, 0, k * (k + 1) / 2 + 2 * k * (n - k))}
    
  • Sage
    [[k*(k+1 + 4*(n-k))/2 for k in (1..n)] for n in (1..12)] # G. C. Greubel, Sep 05 2019
    

Formula

T(n, k) = k*(k+1)/2 + 2*k*(n-k) if 0 < k <= n.
G.f.: (1+x-2*x^2*y)/((1-x)^2*(1-x*y)^3). - Vladeta Jovovic, Mar 05 2004
T(n, k) = A141419(2*n-k, k). - Peter Munn, Aug 21 2019

Extensions

Offset changed to 1 by N. J. A. Sloane, Aug 21 2019