A070750 0 if n-th prime is even, 1 if n-th prime is == 1 (mod 4), and -1 if n-th prime is == 3 (mod 4).
0, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, 1, -1
Offset: 1
Examples
p = 4*k+1 (see A002144): a(p) = sin((4*k+1)*Pi/2) = sin(2*k*Pi + Pi/2) = sin(Pi/2) = 1. p = 4*k+3 (see A002145): a(p) = sin((4*k+3)*Pi/2) = sin(2*k*Pi + 3*Pi/2) = sin(3*Pi/2) = -1.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Legendre Symbol.
- Wikipedia, Wilson's theorem.
Crossrefs
Programs
-
Haskell
a070750 = (2 -) . (`mod` 4) . a000040 -- Reinhard Zumkeller, Feb 28 2012
-
Mathematica
a[n_] := JacobiSymbol[-1, Prime[n]]; a[1] = 0; Table[a[n], {n, 1, 72}] (* Jean-François Alcover, Oct 05 2012, after T. D. Noe *) Table[Which[EvenQ[p],0,Mod[p,4]==1,1,True,-1],{p,Prime[Range[80]]}] (* Harvey P. Dale, Mar 16 2020 *)
-
PARI
apply(n->2-n%4,primes(100)) \\ Charles R Greathouse IV, Aug 21 2011
Formula
a(n) = 2 - prime(n) mod 4 = 2 - A039702(n).
a(n) = (-1)^((prime(n)-1)/2) for n > 1. - T. D. Noe, Nov 05 2003
From Amiram Eldar, Dec 24 2022: (Start)
Product_{n>=1} (1 - a(n)/prime(n)) = 4/Pi (A088538).
Product_{n>=1} (1 + a(n)/prime(n)) = 2/Pi (A060294). (End)
Extensions
Wording of definition changed by N. J. A. Sloane, Jun 21 2015
Comments