cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A228836 Triangle defined by T(n,k) = binomial(n^2, (n-k)*k), for n>=0, k=0..n, as read by rows.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 36, 36, 1, 1, 560, 1820, 560, 1, 1, 12650, 177100, 177100, 12650, 1, 1, 376992, 30260340, 94143280, 30260340, 376992, 1, 1, 13983816, 8217822536, 92263734836, 92263734836, 8217822536, 13983816, 1, 1, 621216192, 3284214703056, 159518999862720, 488526937079580, 159518999862720, 3284214703056, 621216192, 1
Offset: 0

Views

Author

Paul D. Hanna, Sep 05 2013

Keywords

Examples

			The triangle of coefficients C(n^2, (n-k)*k), n>=k, k=0..n, begins:
  1;
  1, 1;
  1, 4, 1;
  1, 36, 36, 1;
  1, 560, 1820, 560, 1;
  1, 12650, 177100, 177100, 12650, 1;
  1, 376992, 30260340, 94143280, 30260340, 376992, 1;
  1, 13983816, 8217822536, 92263734836, 92263734836, 8217822536, 13983816, 1;
  ...
		

Crossrefs

Cf. A207136 (row sums), A228837 (antidiagonal sums), A070780 (column 1).
Cf. related triangles: A228900(exp), A209330, A226234, A228832.

Programs

  • Mathematica
    T[n_,k_]:=Binomial[n^2, (n-k)*k]; Table[T[n,k],{n,0,8},{k,0,n}]//Flatten (* Stefano Spezia, Aug 02 2025 *)
  • PARI
    {T(n,k)=binomial(n^2, (n-k)*k)}
    for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))

A295764 G.f. satisfies: A(x) = Sum_{n>=0} binomial((n+1)^2,n)/(n+1) * x^n/A(x)^n.

Original entry on oeis.org

1, 2, 8, 84, 1522, 38940, 1278880, 51136512, 2407921070, 130495143060, 8002598818976, 548083639109204, 41481408076217480, 3439242379130298624, 310088460754461374608, 30213233395705566500248, 3164041937175571224372118, 354458174755809132668847604, 42301583754989091491716706272, 5358139267082652649000120167456
Offset: 0

Views

Author

Paul D. Hanna, Jan 06 2018

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 8*x^2 + 84*x^3 + 1522*x^4 + 38940*x^5 + 1278880*x^6 + 51136512*x^7 + 2407921070*x^8 + 130495143060*x^9 + 8002598818976*x^10 +...
such that
A(x) = 1 + 2*(x/A(x)) + 12*(x/A(x))^2 + 140*(x/A(x))^3 + 2530*(x/A(x))^4 + 62832*(x/A(x))^5 + 1997688*(x/A(x))^6 +...+ binomial((n+1)^2,n)/(n+1)*(x/A(x))^n +...
The table of coefficients of x^k in A(x)^(n+1) begins:
  [1, 2, 8, 84, 1522, 38940, 1278880, 51136512, 2407921070, ...];
  [1, 4, 20, 200, 3444, 85312, 2744928, 108267280, 5049708672, ...];
  [1, 6, 36, 356, 5862, 140508, 4424984, 172064160, 7946443350, ...];
  [1, 8, 56, 560, 8888, 206176, 6350112, 243284064, 11121338640, ...];
  [1, 10, 80, 820, 12650, 284252, 8556240, 322780800, 14599990830, ...];
  [1, 12, 108, 1144, 17292, 376992, 11084864, 411518448, 18410660208, ...];
  [1, 14, 140, 1540, 22974, 487004, 13983816, 510586400, 22584587382, ...];
  [1, 16, 176, 2016, 29872, 617280, 17308096, 621216192, 27156348512, ...];
  [1, 18, 216, 2580, 38178, 771228, 21120768, 744800256, 32164253550, ...]; ...
in which the main diagonal begins:
  [1, 4, 36, 560, 12650, 376992, 13983816, ..., binomial((n+1)^2,n), ...],
thus [x^n] A(x)^(n+1) = [x^n] (1 + x)^((n+1)^2) for n>=0.
		

Crossrefs

Programs

  • Mathematica
    terms = 20; A[] = 1; Do[A[x] = Sum[Binomial[(n+1)^2, n]/(n+1)*x^n/A[x]^n, {n, 0, terms}] + O[x]^terms // Normal, terms];
    CoefficientList[A[x], x] (* Jean-François Alcover, Jan 14 2018 *)
  • PARI
    {a(n) = my(A=[1]); for(m=1,n, A = concat(A,0); V = Vec( Ser(A)^(m+1) ); A[m+1] = (binomial((m+1)^2,m) - V[m+1])/(m+1);); A[n+1]}
    for(n=0,20,print1(a(n),", "))

Formula

G.f. A(x) satisfies: [x^n] A(x)^(n+1) = binomial((n+1)^2,n) for n>=0.
a(n) ~ c * exp(n) * n^(n - 3/2), where c = exp(3/2 - 2*exp(-2)) / sqrt(2*Pi) = 1.3639581816297942453935... - Vaclav Kotesovec, Aug 11 2021, updated Apr 20 2024
Showing 1-2 of 2 results.