cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A070825 One half of product of first n+1 Lucas numbers A000032.

Original entry on oeis.org

1, 1, 3, 12, 84, 924, 16632, 482328, 22669416, 1722875616, 211913700768, 42170826452832, 13579006117811904, 7074662187380001984, 5963940223961341672512, 8134814465483270041306368, 17953535525321576981163154176, 64112075360923351399733623562496, 370439571435415124387660876944101888
Offset: 0

Views

Author

Wolfdieter Lang, May 10 2002

Keywords

Crossrefs

Cf. A000032, A003266 (for Fibonacci), A003046 (for Catalan), A101690, A135407, A218490.

Programs

  • Magma
    [1] cat [&*[Lucas(i+1): i in [0..n]]: n in [0..20]]; // Vincenzo Librandi, Sep 15 2016
  • Maple
    c := arccsch(2) - I*Pi/2:
    A070825 := n -> local j; 2^n*mul(I^j*cosh(c*j), j = 1..n):
    seq(simplify(A070825(n)), n = 0..18);  # Peter Luschny, Jul 07 2025
  • Mathematica
    FoldList[Times, LucasL[Range[0, 20]]]/2 (* or *)
    Table[Round[GoldenRatio^(n(n+1)/2) QPochhammer[-1, GoldenRatio-2, n+1]]/2, {n, 0, 20}] (* Vladimir Reshetnikov, Sep 15 2016 *)
  • PARI
    a(n) = prod(k=0, n, fibonacci(k+1)+fibonacci(k-1))/2; \\ Michel Marcus, Mar 18 2016
    

Formula

a(n) = (Product_{k=0..n} L(k))/2 with L = A000032.
Sum_{n>=0} 1/a(n) = 1 + A101690. - Amiram Eldar, Nov 09 2020
a(n) = 2^n*Product_{j=1..n} i^j*cosh(c*j), where c = arccsch(2) - i*Pi/2. - Peter Luschny, Jul 07 2025