A070825 One half of product of first n+1 Lucas numbers A000032.
1, 1, 3, 12, 84, 924, 16632, 482328, 22669416, 1722875616, 211913700768, 42170826452832, 13579006117811904, 7074662187380001984, 5963940223961341672512, 8134814465483270041306368, 17953535525321576981163154176, 64112075360923351399733623562496, 370439571435415124387660876944101888
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..90
- R. Grünwald, E. Heidel, A. Strätz, M. Sünkel and R. Terbach, Induction on Number Series, Fakultät fur Wirtschaftsinformatik und Angewandte Informatik, Otto-Friedrich-Universität Bamberg, 2012. - _N. J. A. Sloane_, Feb 07 2013
Programs
-
Magma
[1] cat [&*[Lucas(i+1): i in [0..n]]: n in [0..20]]; // Vincenzo Librandi, Sep 15 2016
-
Maple
c := arccsch(2) - I*Pi/2: A070825 := n -> local j; 2^n*mul(I^j*cosh(c*j), j = 1..n): seq(simplify(A070825(n)), n = 0..18); # Peter Luschny, Jul 07 2025
-
Mathematica
FoldList[Times, LucasL[Range[0, 20]]]/2 (* or *) Table[Round[GoldenRatio^(n(n+1)/2) QPochhammer[-1, GoldenRatio-2, n+1]]/2, {n, 0, 20}] (* Vladimir Reshetnikov, Sep 15 2016 *)
-
PARI
a(n) = prod(k=0, n, fibonacci(k+1)+fibonacci(k-1))/2; \\ Michel Marcus, Mar 18 2016
Formula
a(n) = (Product_{k=0..n} L(k))/2 with L = A000032.
Sum_{n>=0} 1/a(n) = 1 + A101690. - Amiram Eldar, Nov 09 2020
a(n) = 2^n*Product_{j=1..n} i^j*cosh(c*j), where c = arccsch(2) - i*Pi/2. - Peter Luschny, Jul 07 2025