cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A003266 Product of first n nonzero Fibonacci numbers F(1), ..., F(n).

Original entry on oeis.org

1, 1, 1, 2, 6, 30, 240, 3120, 65520, 2227680, 122522400, 10904493600, 1570247078400, 365867569267200, 137932073613734400, 84138564904377984000, 83044763560621070208000, 132622487406311849122176000, 342696507457909818131702784000
Offset: 0

Views

Author

Keywords

Comments

Equals right border of unsigned triangle A158472. - Gary W. Adamson, Mar 20 2009
Three closely related sequences are A194157 (product of first n nonzero F(2*n)), A194158 (product of first n nonzero F(2*n-1)) and A123029 (a(2*n) = A194157(n) and a(2*n-1) = A194158(n)). - Johannes W. Meijer, Aug 21 2011
a(n+1)^2 is the number of ways to tile this pyramid of height n with squares and dominoes, where vertical dominoes can only appear (if at all) in the central column. Here is a pyramid of height n=4,
_
||_
||_||
||_|||_|_
|||_|||_|_|,
and here is one of the a(5)^2 = 900 possible such tilings with our given restrictions:
_
||_||
|__|_|_|_
||__|___|||. - Greg Dresden and Jiayi Liu, Aug 23 2024

Examples

			a(5) = 30 because the first 5 Fibonacci numbers are 1, 1, 2, 3, 5 and 1 * 1 * 2 * 3 * 5 = 30.
a(6) = 240 because 8 is the sixth Fibonacci number and a(5) * 8 = 240.
a(7) = 3120 because 13 is the seventh Fibonacci number and a(6) * 13 = 3120.
G.f. = 1 + x + x^2 + 2*x^3 + 6*x^4 + 30*x^5 + 240*x^6 + 3120*x^7 + ...
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, second edition, Addison Wesley, p 597
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A123741 (for Fibonacci second version), A002110 (for primes), A070825 (for Lucas), A003046 (for Catalan), A126772 (for Padovan), A069777 (q-factorial numbers for sums of powers). - Johannes W. Meijer, Aug 21 2011

Programs

  • Haskell
    a003266 n = a003266_list !! (n-1)
    a003266_list = scanl1 (*) $ tail a000045_list
    -- Reinhard Zumkeller, Sep 03 2013
    
  • Maple
    with(combinat): A003266 := n-> mul(fibonacci(i),i=1..n): seq(A003266(n), n=0..20);
  • Mathematica
    Rest[FoldList[Times,1,Fibonacci[Range[20]]]] (* Harvey P. Dale, Jul 11 2011 *)
    a[ n_] := If[ n < 0, 0, Fibonorial[n]]; (* Michael Somos, Oct 23 2017 *)
    Table[Round[GoldenRatio^(n(n-1)/2) QFactorial[n, GoldenRatio-2]], {n, 20}] (* Vladimir Reshetnikov, Sep 14 2016 *)
  • PARI
    a(n)=prod(i=1,n,fibonacci(i)) \\ Charles R Greathouse IV, Jan 13 2012
    
  • Python
    from itertools import islice
    def A003266_gen(): # generator of terms
        a,b,c = 1,1,1
        while True:
            yield c
            c *= a
            a, b = b, a+b
    A003266_list = list(islice(A003266_gen(),20)) # Chai Wah Wu, Jan 11 2023

Formula

a(n) is asymptotic to C*phi^(n*(n+1)/2)/sqrt(5)^n where phi = (1 + sqrt(5))/2 is the golden ratio and the decimal expansion of C is given in A062073. - Benoit Cloitre, Jan 11 2003
a(n+3) = a(n+1)*a(n+2)/a(n) + a(n+2)^2/a(n+1). - Robert Israel, May 19 2014
a(0) = 1 by convention since empty products equal 1. - Michael Somos, Oct 06 2014
0 = a(n)*(+a(n+1)*a(n+3) - a(n+2)^2) + a(n+2)*(-a(n+1)^2) for all n >= 0. - Michael Somos, Oct 06 2014
Sum_{n>=1} 1/a(n) = A101689. - Amiram Eldar, Oct 27 2020
Sum_{n>=1} (-1)^(n+1)/a(n) = A135598. - Amiram Eldar, Apr 12 2021
a(n) = (2/sqrt(5))^n * Product_{j=1..n} i^j*sinh(c*j), where c = arccsch(2) - i*Pi/2. - Peter Luschny, Jul 07 2025

Extensions

a(0)=1 prepended by Alois P. Heinz, Oct 12 2016

A070826 One half of product of first n primes A000040.

Original entry on oeis.org

1, 3, 15, 105, 1155, 15015, 255255, 4849845, 111546435, 3234846615, 100280245065, 3710369067405, 152125131763605, 6541380665835015, 307444891294245705, 16294579238595022365, 961380175077106319535, 58644190679703485491635, 3929160775540133527939545, 278970415063349480483707695
Offset: 1

Views

Author

Wolfdieter Lang, May 10 2002

Keywords

Comments

Also, with offset 0, product of first n odd primes. - N. J. A. Sloane, Feb 26 2017
Identical to A002110(n)/2, n>=1.
a(n+1) is the least odd number with exactly n distinct prime divisors. - Labos Elemer, Mar 24 2003
Also, odd numbers n for which sigma(n)*phi(n)/n^2 reaches a new record low, monotonically decreasing to the lower bound 8/Pi^2. - M. F. Hasler, Jul 08 2025

Crossrefs

Cf. A003266 (for Fibonacci), A070825 (for Lucas), A003046 (for Catalan).
Cf. also A002110, A024451, A060389, A091852, A276086, A203008 [= A003415(a(1+n))].
Range of A196529.

Programs

  • Maple
    a:=n->mul(ithprime(j), j=2..n):seq(a(n), n=1..17); # Zerinvary Lajos, Aug 24 2008
  • Mathematica
    Rest[ FoldList[ Times, 1, Prime[ Range[ 18]] ]]/2 (* Robert G. Wilson v, Feb 17 2004 *)
    FoldList[Times, 1, Prime[Range[2, 18]]] (* Zak Seidov, Jan 26 2009 *)
  • PARI
    a(n) = prod(k=2, n, prime(k)) \\ Michel Marcus, Mar 25 2017, simplified by M. F. Hasler, Jul 09 2025
    
  • Python
    from sympy import primorial
    def A070826(n): return primorial(n)>>1 # Chai Wah Wu, Jul 21 2022

Formula

a(n) = A002110(n)/2.
From Antti Karttunen, Feb 06 2024: (Start)
a(1) = 1, and for n > 1, a(n) = A276086(A060389(n-1)).
a(n) = A024451(n) - 2*A203008(n-1).
(End)
a(n) = A000040(n)*a(n-1) for n > 1, a(1) = 1. - M. F. Hasler, Jul 09 2025

Extensions

Formula corrected by Gary Detlefs, Dec 07 2011

A135407 Partial products of A000032 (Lucas numbers beginning at 2).

Original entry on oeis.org

2, 2, 6, 24, 168, 1848, 33264, 964656, 45338832, 3445751232, 423827401536, 84341652905664, 27158012235623808, 14149324374760003968, 11927880447922683345024, 16269628930966540082612736
Offset: 0

Views

Author

Jonathan Vos Post, Dec 09 2007

Keywords

Comments

This is to A000032 as A003266 is to A000045. a(n) is asymptotic to C*phi^(n*(n+1)/2) where phi=(1+sqrt(5))/2 is the golden ratio and C = 1.3578784076121057013874397... (see A218490). - Corrected and extended by Vaclav Kotesovec, Oct 30 2012

Examples

			a(0) = L(0) = 2.
a(1) = L(0)*L(1) = 2*1 = 2.
a(2) = L(0)*L(1)*L(2) = 2*1*3 = 6.
a(3) = L(0)*L(1)*L(2)*L(3) = 2*1*3*4 = 24.
		

Crossrefs

Programs

  • Mathematica
    Rest[FoldList[Times,1,LucasL[Range[0,20]]]] (* Harvey P. Dale, Aug 21 2013 *)
    Table[Round[GoldenRatio^(n(n+1)/2) QPochhammer[-1, GoldenRatio-2, n+1]], {n, 0, 20}] (* Vladimir Reshetnikov, Sep 14 2016 *)
  • PARI
    a(n) = prod(k=0, n, fibonacci(k+1)+fibonacci(k-1)); \\ Michel Marcus, Oct 13 2016

Formula

a(n) = Product_{k=0..n} A000032(k).
C = exp( Sum_{k>=1} 1/(k*(((3-sqrt(5))/2)^k-(-1)^k)) ). - Vaclav Kotesovec, Jun 08 2013

A374654 a(n) = Product_{k=0..n} L(k)+1, where L=A000032 (Lucas numbers).

Original entry on oeis.org

3, 6, 24, 120, 960, 11520, 218880, 6566400, 315187200, 24269414400, 3009407385600, 601881477120000, 194407717109760000, 101480828331294720000, 85649819111612743680000, 116912003087351395123200000, 258141702816871880432025600000
Offset: 0

Views

Author

Clark Kimberling, Jul 25 2024

Keywords

Crossrefs

Programs

  • Mathematica
    w[n_] := Product[LucasL[k] + 1, {k, 0, n}]
    Table[w[n], {n, 0, 20}]

Formula

a(n) = Product_{k=0..n} L(k)+1, where L=A000032 (Lucas numbers).

A218490 Decimal expansion of Lucas factorial constant.

Original entry on oeis.org

1, 3, 5, 7, 8, 7, 8, 4, 0, 7, 6, 1, 2, 1, 0, 5, 7, 0, 1, 3, 8, 7, 4, 3, 9, 7, 0, 9, 7, 6, 0, 6, 0, 7, 1, 8, 5, 5, 7, 8, 6, 0, 5, 8, 6, 5, 2, 9, 5, 6, 7, 8, 7, 0, 4, 4, 9, 6, 8, 7, 8, 2, 5, 4, 3, 8, 4, 0, 7, 1, 9, 1, 1, 0, 3, 4, 8, 6, 2, 3, 3, 6, 8, 7, 7, 1, 4
Offset: 1

Views

Author

Vaclav Kotesovec, Oct 30 2012

Keywords

Comments

The Lucas factorial constant is associated with the Lucas factorial A135407.

Examples

			1.35787840761210570138743970976060718557860586529567870449687825438407191103...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[QPochhammer[-1, -1/GoldenRatio^2], 10, 105][[1]] (* slightly modified by Robert G. Wilson v, Dec 21 2017 *)
  • PARI
    prodinf(j=0, 1 + ((sqrt(5) - 3)/2)^j) \\ Iain Fox, Dec 21 2017

Formula

Equals exp( Sum_{k>=1} 1/(k*(((3-sqrt(5))/2)^k-(-1)^k)) ). - Vaclav Kotesovec, Jun 08 2013
Equals Product_{k=0..infinity} (1 + (-1)^k/phi^(2*k)). - G. C. Greubel, Dec 23 2017
Equals lim_{n->oo} A135407(n)/phi^(n*(n+1)/2), where phi is the golden ratio (A001622). - Amiram Eldar, Jan 23 2022

A294373 Product of first n Bell numbers.

Original entry on oeis.org

1, 1, 2, 10, 150, 7800, 1583400, 1388641800, 5748977052000, 121573617718644000, 14099500314919737900000, 9567497928695086546803000000, 40313580569855830588349480391000000, 1114446238307803607782300144651734867000000
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 29 2017

Keywords

Crossrefs

Programs

  • Maple
    B:= map(combinat:-bell, [$0..19]):
    map(i -> convert(B[1..i],`*`),[$1..20]); # Robert Israel, Oct 29 2017
  • Mathematica
    Table[Product[BellB[k], {k, 0, n}], {n, 0, 15}]

Formula

log(a(n)) ~ n^2 * LambertW(n)/2 * (1 - 3/(2*LambertW(n)) + 3/(2*LambertW(n)^2) + 1/(4*LambertW(n)^3)). - Vaclav Kotesovec, Feb 26 2021

A342170 Product of first n little Schröder numbers.

Original entry on oeis.org

1, 1, 3, 33, 1485, 292545, 264168135, 1130375449665, 23503896724884345, 2422053053602606867905, 1256704025339194996874320395, 3326147448057830199712191898815585, 45398150793225628820115544929795174823365, 3225056167710201318911738099365978237877235350145
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 03 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<2, 1,
          ((6*n-3)*b(n-1)-(n-2)*b(n-2))/(n+1))
        end:
    a:= proc(n) a(n):=`if`(n=0, 1, a(n-1)*b(n)) end:
    seq(a(n), n=0..15);  # Alois P. Heinz, Mar 03 2021
  • Mathematica
    Table[Product[Hypergeometric2F1[1-k, k+2, 2, -1], {k, 1, n}], {n, 0, 15}]
    FoldList[Times, 1, Table[Hypergeometric2F1[1 - n, n + 2, 2, -1], {n, 1, 15}]]

Formula

a(n) = Product_{k=1..n} A001003(k).
a(n) ~ c * (1 + sqrt(2))^(n*(n+2)) * exp(3*n/2) / (2^((7*n + 3)/4) * Pi^((2*n + 3)/4) * n^(3*n/2 + 3/2 + 9/(16*sqrt(2)))), where c = 0.89405100528141459535141257102427907468205556782800836208733677564241771912...

A186269 a(n) = Product_{k=0..n-1} A084057(k+1).

Original entry on oeis.org

1, 1, 6, 96, 5376, 946176, 544997376, 1011515129856, 6085275021213696, 118395110812733669376, 7456050498542715562622976, 1519364146391040406489059557376, 1001953802522449942301649259468947456, 2138185445843748536070796346094885374263296, 14766000790292725890315725371457440731168428261376
Offset: 0

Views

Author

Paul Barry, Feb 16 2011

Keywords

Comments

a(n) is the determinant of the symmetric matrix (if(j<=floor((i+j)/2), 2^j*F(j+1), 2^i*F(i+1)))_{0<=i,j<=n}.

Examples

			a(2)=6 since det[1, 1, 1; 1, 2, 2; 1, 2, 8]=6.
		

Crossrefs

Programs

  • Mathematica
    Table[FullSimplify[Product[(1+Sqrt[5])^k/2 + (1-Sqrt[5])^k/2,{k,0,n}]],{n,0,15}] (* Vaclav Kotesovec, Jul 11 2015 *)
    Table[Product[LucasL[k]*2^(k-1),{k,0,n}],{n,0,15}] (* Vaclav Kotesovec, Jul 11 2015 *)

Formula

a(n) = Product_{k=0..n} (1+sqrt(5))^k/2+(1-sqrt(5))^k/2.
a(n) = Product_{k=0..n} Sum_{j=0..floor(k/2)} binomial(k,2*j)*5^j. [corrected by Jason Yuen, Feb 12 2025]
a(n) ~ c * (1+sqrt(5))^(n*(n+1)/2) / 2^(n+1), where c = A218490 = 1.3578784076121057013874397... is the Lucas factorial constant. - Vaclav Kotesovec, Jul 11 2015

A342166 Product of first n Fubini numbers.

Original entry on oeis.org

1, 1, 3, 39, 2925, 1582425, 7410496275, 350464600333575, 191295845123076910125, 1355763582602823185129417625, 138623522325287867599380791765497875, 224935042709004795568466587349227029537282375, 6318777956744220129890735589019782971247629409914638125
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 03 2021

Keywords

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1,
          add(g(n-j)*binomial(n, j), j=1..n))
        end:
    a:= proc(n) option remember; `if`(n=0, 1, a(n-1)*g(n)) end:
    seq(a(n), n=0..15);  # Alois P. Heinz, Mar 03 2021
  • Mathematica
    Table[Product[Sum[j!*StirlingS2[k, j], {j, 0, k}], {k, 1, n}], {n, 0, 12}]
    Table[Product[PolyLog[-k, 1/2]/2, {k, 1, n}], {n, 0, 12}]
    FoldList[Times, 1, Table[PolyLog[-n, 1/2]/2, {n, 1, 12}]]

Formula

a(n) = Product_{k=1..n} A000670(k).
a(n) ~ c * BarnesG(n+2) / (2^n * log(2)^(n*(n+3)/2)), where c = 0.960303470666951851619546415046950178638511457142008903473074598398282549...
a(n) ~ c * Pi^((n+1)/2) * n^(n^2/2 + n + 5/12) / (A * 2^((n-1)/2) * exp(3*n^2/4 + n - 1/12) * log(2)^(n*(n+3)/2)), where A is the Glaisher-Kinkelin constant A074962.

A385732 Triangle read by rows: the numerators of the Lucas triangle.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 4, 4, 1, 1, 7, 28, 7, 1, 1, 11, 77, 77, 11, 1, 1, 18, 66, 231, 66, 18, 1, 1, 29, 174, 957, 957, 174, 29, 1, 1, 47, 1363, 4089, 44979, 4089, 1363, 47, 1, 1, 76, 3572, 25897, 155382, 155382, 25897, 3572, 76, 1, 1, 123, 3116, 36613, 1061777, 19111986, 1061777, 36613, 3116, 123, 1
Offset: 0

Views

Author

Peter Luschny, Jul 08 2025

Keywords

Examples

			Triangle begins:
  [0] 1;
  [1] 1,  1;
  [2] 1,  3,    1;
  [3] 1,  4,    4,     1;
  [4] 1,  7,   28,     7,      1;
  [5] 1, 11,   77,    77,     11,      1;
  [6] 1, 18,   66,   231,     66,     18,     1;
  [7] 1, 29,  174,   957,    957,    174,    29,    1;
  [8] 1, 47, 1363,  4089,  44979,   4089,  1363,   47,  1;
  [9] 1, 76, 3572, 25897, 155382, 155382, 25897, 3572, 76, 1;
		

Crossrefs

Cf. A385733 (denominators), A070825 (Lucanorial), A003266 (Fibonorial), A010048 (Fibonomial).

Programs

  • Maple
    c := arccsch(2) - I*Pi/2:
    LT := (n, k) -> mul(I^j*cosh(c*j), j = k + 1..n) / mul(I^j*cosh(c*j), j = 1..n - k):
    T := (n, k) -> numer(simplify(LT(n, k))): seq(seq(T(n, k), k = 0..n), n = 0..10);
  • Mathematica
    T[n_, k_] := With[{c = ArcCsch[2] - I Pi/2}, Product[I^j Cosh[c j], {j, k + 1, n}] / Product[I^j Cosh[c j], {j, 1, n - k}]];
    Table[Simplify[T[n, k]], {n, 0, 8}, {k, 0, n}] // Flatten // Numerator

Formula

LT(n, k) = Product_{j=k+1..n} i^j*cosh(c*j) / Product_{j=1..n-k} i^j*cosh(c*j) where c = arccsch(2) - i*Pi/2 and i is the imaginary unit. If in this formula cosh is substituted by sinh one gets the Fibonomial triangle A010048.
T(n, k) = numerator(LT(n, k)).
Showing 1-10 of 14 results. Next