A058807
a(n) = Product_{k=1..n} s(n,k), where s(n,k) is unsigned Stirling number of the first kind. (s(n,k) = number of permutations of n elements which contain exactly k cycles.)
Original entry on oeis.org
1, 1, 6, 396, 420000, 9432450000, 5571367220160000, 103458225408290423193600, 70288262635020872178876253470720, 1993179010286886206697449779415040000000000, 2650683735711909138223088071500675703191552000000000000
Offset: 1
a(4) = s(4,1)*s(4,2)*s(4,3)*s(4,4) = 6*11*6*1 = 396.
-
a:=n->mul(abs(Stirling1(n, k)), k=1..n): seq(a(n), n=1..10); # Zerinvary Lajos, Jun 28 2007
-
Abs[Table[Product[StirlingS1[n,k],{k,n}],{n,10}]] (* Harvey P. Dale, Oct 18 2014 *)
A058808
Product{k=1 to n}[S(n,k)], where S(n,k) is a Stirling number of the second kind. (S(n,k) = number of ways of partitioning a set of n elements into k nonempty subsets.)
Original entry on oeis.org
1, 1, 3, 42, 3750, 2720250, 19512927000, 1631977354072800, 1833446251541145780000, 31323109023670061678062500000, 9087660958278168844264470405352500000
Offset: 1
a(4) = S(4,1)*S(4,2)*S(4,3)*S(4,4) = 1*7*6*1 = 42.
-
a:=n->mul(stirling2(n, k), k=1..n): seq(a(n), n=1..12); # Zerinvary Lajos, Jun 28 2007
-
Table[Product[StirlingS2[n, k], {k, 1, n}], {n, 1, 12}] (* Vaclav Kotesovec, Feb 26 2021 *)
-
a(n) = prod(k=1, n, stirling(n, k, 2)); \\ Michel Marcus, Dec 12 2015
A342170
Product of first n little Schröder numbers.
Original entry on oeis.org
1, 1, 3, 33, 1485, 292545, 264168135, 1130375449665, 23503896724884345, 2422053053602606867905, 1256704025339194996874320395, 3326147448057830199712191898815585, 45398150793225628820115544929795174823365, 3225056167710201318911738099365978237877235350145
Offset: 0
-
b:= proc(n) option remember; `if`(n<2, 1,
((6*n-3)*b(n-1)-(n-2)*b(n-2))/(n+1))
end:
a:= proc(n) a(n):=`if`(n=0, 1, a(n-1)*b(n)) end:
seq(a(n), n=0..15); # Alois P. Heinz, Mar 03 2021
-
Table[Product[Hypergeometric2F1[1-k, k+2, 2, -1], {k, 1, n}], {n, 0, 15}]
FoldList[Times, 1, Table[Hypergeometric2F1[1 - n, n + 2, 2, -1], {n, 1, 15}]]
A342166
Product of first n Fubini numbers.
Original entry on oeis.org
1, 1, 3, 39, 2925, 1582425, 7410496275, 350464600333575, 191295845123076910125, 1355763582602823185129417625, 138623522325287867599380791765497875, 224935042709004795568466587349227029537282375, 6318777956744220129890735589019782971247629409914638125
Offset: 0
-
g:= proc(n) option remember; `if`(n=0, 1,
add(g(n-j)*binomial(n, j), j=1..n))
end:
a:= proc(n) option remember; `if`(n=0, 1, a(n-1)*g(n)) end:
seq(a(n), n=0..15); # Alois P. Heinz, Mar 03 2021
-
Table[Product[Sum[j!*StirlingS2[k, j], {j, 0, k}], {k, 1, n}], {n, 0, 12}]
Table[Product[PolyLog[-k, 1/2]/2, {k, 1, n}], {n, 0, 12}]
FoldList[Times, 1, Table[PolyLog[-n, 1/2]/2, {n, 1, 12}]]
A343263
a(0) = 1; a(n+1) = exp(-a(n)) * Sum_{k>=0} a(n)^k * k^n / k!.
Original entry on oeis.org
1, 1, 1, 2, 22, 301554, 2493675105669492542968967478
Offset: 0
-
a[0] = 1; a[n_] := a[n] = Sum[StirlingS2[n - 1, k] a[n - 1]^k, {k, 0, n - 1}]; Table[a[n], {n, 0, 6}]
a[0] = 1; a[n_] := a[n] = BellB[n - 1, a[n - 1]]; Table[a[n], {n, 0, 6}]
Showing 1-5 of 5 results.
Comments