cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A062073 Decimal expansion of Fibonacci factorial constant.

Original entry on oeis.org

1, 2, 2, 6, 7, 4, 2, 0, 1, 0, 7, 2, 0, 3, 5, 3, 2, 4, 4, 4, 1, 7, 6, 3, 0, 2, 3, 0, 4, 5, 5, 3, 6, 1, 6, 5, 5, 8, 7, 1, 4, 0, 9, 6, 9, 0, 4, 4, 0, 2, 5, 0, 4, 1, 9, 6, 4, 3, 2, 9, 7, 3, 0, 1, 2, 1, 4, 0, 2, 2, 1, 3, 8, 3, 1, 5, 3, 1, 2, 1, 6, 8, 4, 5, 2, 6, 2, 1, 5, 6, 2, 4, 9, 4, 7, 9, 7, 7, 4, 1, 2, 5, 9, 1, 3
Offset: 1

Views

Author

Jason Earls, Jun 27 2001

Keywords

Comments

The Fibonacci factorial constant is associated with the Fibonacci factorial A003266.
Two closely related constants are A194159 and A194160. [Johannes W. Meijer, Aug 21 2011]

Examples

			1.226742010720353244417630230455361655871409690440250419643297301214...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.2.5.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison Wesley, 1990, pp. 478, 571.

Crossrefs

Programs

  • Mathematica
    RealDigits[N[QPochhammer[-1/GoldenRatio^2], 105]][[1]] (* Alonso del Arte, Dec 20 2010 *)
    RealDigits[N[Re[(-1)^(1/24) * GoldenRatio^(1/12) / 2^(1/3) * EllipticThetaPrime[1,0,-I/GoldenRatio]^(1/3)], 120]][[1]] (* Vaclav Kotesovec, Jul 19 2015, after Eric W. Weisstein *)
  • PARI
    \p 1300 a=-1/(1/2+sqrt(5)/2)^2; prod(n=1,17000,(1-a^n))
    
  • PARI
    { default(realprecision, 5080); p=-1/(1/2 + sqrt(5)/2)^2; x=prodinf(k=1, 1-p^k); for (n=1, 5000, d=floor(x); x=(x-d)*10; write("b062073.txt", n, " ", d)) } \\ Harry J. Smith, Jul 31 2009

Formula

C = (1-a)*(1-a^2)*(1-a^3)... 1.2267420... where a = -1/phi^2 and where phi is the Golden ratio = 1/2 + sqrt(5)/2.
C = QPochhammer[ -1/GoldenRatio^2]. [Eric W. Weisstein, Dec 01 2009]
C = A194159 * A194160. [Johannes W. Meijer, Aug 21 2011]
C = exp( Sum_{k>=1} 1/(k*(1-(-(3+sqrt(5))/2)^k)) ). - Vaclav Kotesovec, Jun 08 2013
C = Sum_{k = -inf .. inf} (-1)^((k-1)*k/2) / phi^((3*k-1)*k), where phi = (1 + sqrt(5))/2. - Vladimir Reshetnikov, Sep 20 2016

A070825 One half of product of first n+1 Lucas numbers A000032.

Original entry on oeis.org

1, 1, 3, 12, 84, 924, 16632, 482328, 22669416, 1722875616, 211913700768, 42170826452832, 13579006117811904, 7074662187380001984, 5963940223961341672512, 8134814465483270041306368, 17953535525321576981163154176, 64112075360923351399733623562496, 370439571435415124387660876944101888
Offset: 0

Views

Author

Wolfdieter Lang, May 10 2002

Keywords

Crossrefs

Cf. A000032, A003266 (for Fibonacci), A003046 (for Catalan), A101690, A135407, A218490.

Programs

  • Magma
    [1] cat [&*[Lucas(i+1): i in [0..n]]: n in [0..20]]; // Vincenzo Librandi, Sep 15 2016
  • Maple
    c := arccsch(2) - I*Pi/2:
    A070825 := n -> local j; 2^n*mul(I^j*cosh(c*j), j = 1..n):
    seq(simplify(A070825(n)), n = 0..18);  # Peter Luschny, Jul 07 2025
  • Mathematica
    FoldList[Times, LucasL[Range[0, 20]]]/2 (* or *)
    Table[Round[GoldenRatio^(n(n+1)/2) QPochhammer[-1, GoldenRatio-2, n+1]]/2, {n, 0, 20}] (* Vladimir Reshetnikov, Sep 15 2016 *)
  • PARI
    a(n) = prod(k=0, n, fibonacci(k+1)+fibonacci(k-1))/2; \\ Michel Marcus, Mar 18 2016
    

Formula

a(n) = (Product_{k=0..n} L(k))/2 with L = A000032.
Sum_{n>=0} 1/a(n) = 1 + A101690. - Amiram Eldar, Nov 09 2020
a(n) = 2^n*Product_{j=1..n} i^j*cosh(c*j), where c = arccsch(2) - i*Pi/2. - Peter Luschny, Jul 07 2025

A135407 Partial products of A000032 (Lucas numbers beginning at 2).

Original entry on oeis.org

2, 2, 6, 24, 168, 1848, 33264, 964656, 45338832, 3445751232, 423827401536, 84341652905664, 27158012235623808, 14149324374760003968, 11927880447922683345024, 16269628930966540082612736
Offset: 0

Views

Author

Jonathan Vos Post, Dec 09 2007

Keywords

Comments

This is to A000032 as A003266 is to A000045. a(n) is asymptotic to C*phi^(n*(n+1)/2) where phi=(1+sqrt(5))/2 is the golden ratio and C = 1.3578784076121057013874397... (see A218490). - Corrected and extended by Vaclav Kotesovec, Oct 30 2012

Examples

			a(0) = L(0) = 2.
a(1) = L(0)*L(1) = 2*1 = 2.
a(2) = L(0)*L(1)*L(2) = 2*1*3 = 6.
a(3) = L(0)*L(1)*L(2)*L(3) = 2*1*3*4 = 24.
		

Crossrefs

Programs

  • Mathematica
    Rest[FoldList[Times,1,LucasL[Range[0,20]]]] (* Harvey P. Dale, Aug 21 2013 *)
    Table[Round[GoldenRatio^(n(n+1)/2) QPochhammer[-1, GoldenRatio-2, n+1]], {n, 0, 20}] (* Vladimir Reshetnikov, Sep 14 2016 *)
  • PARI
    a(n) = prod(k=0, n, fibonacci(k+1)+fibonacci(k-1)); \\ Michel Marcus, Oct 13 2016

Formula

a(n) = Product_{k=0..n} A000032(k).
C = exp( Sum_{k>=1} 1/(k*(((3-sqrt(5))/2)^k-(-1)^k)) ). - Vaclav Kotesovec, Jun 08 2013

A256831 Decimal expansion of Pell factorial constant.

Original entry on oeis.org

1, 1, 4, 1, 9, 8, 2, 5, 6, 9, 6, 6, 7, 7, 9, 1, 2, 0, 6, 0, 2, 8, 0, 4, 3, 3, 3, 8, 3, 6, 7, 8, 6, 0, 1, 5, 0, 8, 6, 4, 7, 3, 0, 4, 8, 2, 4, 0, 8, 5, 4, 0, 7, 9, 1, 5, 5, 6, 2, 5, 4, 3, 5, 2, 4, 4, 9, 8, 4, 3, 7, 8, 5, 4, 8, 0, 6, 2, 0, 8, 6, 0, 7, 8, 2, 5, 0, 6, 3, 7, 0, 6, 0, 9, 2, 5, 3, 3, 4, 7, 8, 1, 6, 3, 6
Offset: 1

Views

Author

Vaclav Kotesovec, Apr 10 2015

Keywords

Examples

			1.141982569667791206028043338367860150864730482408540791556...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[QPochhammer[2*Sqrt[2]-3], 105]][[1]]

Formula

Equals limit n->infinity A256832(n) / ((1+sqrt(2))^(n*(n+1)/2) / 2^(3*n/2)).

A259314 Decimal expansion of partition factorial constant.

Original entry on oeis.org

9, 1, 1, 0, 1, 6, 7, 3, 1, 3, 3, 2, 2, 4, 9, 9, 5, 1, 8, 6, 1, 5, 4, 7, 4, 6, 9, 5, 9, 4, 6, 8, 3, 4, 5, 2, 7, 8, 0, 7, 3, 8, 6, 0, 9, 7, 8, 0, 0, 8, 0, 9, 3, 0, 2, 8, 1, 3, 2, 1, 4, 9, 0, 2, 2, 7, 5, 9, 1, 4, 9, 1, 2, 4, 0, 4, 5, 5, 5, 7, 5, 1, 1, 6, 5, 0, 2, 5, 3, 7, 0, 7, 0, 2, 7, 5, 3, 9, 2, 1, 0, 4, 4, 7, 5, 0
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 24 2015

Keywords

Examples

			0.91101673133224995186154746959468345278073860978008093028132149022759...
		

Crossrefs

Programs

  • Mathematica
    (* The iteration cycle: *) Do[Print[Product[N[PartitionsP[k]/((E^(Sqrt[2/3]*Sqrt[k-1/24]*Pi) * (1 - Sqrt[3/2]/(Sqrt[k-1/24]*Pi))) / (4*Sqrt[3]*(k-1/24))), 150], {k, 1, n}]], {n, 500, 50000, 500}]

Formula

Equals limit n->infinity Product_{k=1..n} p(k) / (exp(Pi*sqrt(2/3*(k-1/24))) / (4*sqrt(3)*(k-1/24)) * (1 - sqrt(3/(2*(k-1/24)))/Pi)), where p(k) is the partition function A000041.

A186269 a(n) = Product_{k=0..n-1} A084057(k+1).

Original entry on oeis.org

1, 1, 6, 96, 5376, 946176, 544997376, 1011515129856, 6085275021213696, 118395110812733669376, 7456050498542715562622976, 1519364146391040406489059557376, 1001953802522449942301649259468947456, 2138185445843748536070796346094885374263296, 14766000790292725890315725371457440731168428261376
Offset: 0

Views

Author

Paul Barry, Feb 16 2011

Keywords

Comments

a(n) is the determinant of the symmetric matrix (if(j<=floor((i+j)/2), 2^j*F(j+1), 2^i*F(i+1)))_{0<=i,j<=n}.

Examples

			a(2)=6 since det[1, 1, 1; 1, 2, 2; 1, 2, 8]=6.
		

Crossrefs

Programs

  • Mathematica
    Table[FullSimplify[Product[(1+Sqrt[5])^k/2 + (1-Sqrt[5])^k/2,{k,0,n}]],{n,0,15}] (* Vaclav Kotesovec, Jul 11 2015 *)
    Table[Product[LucasL[k]*2^(k-1),{k,0,n}],{n,0,15}] (* Vaclav Kotesovec, Jul 11 2015 *)

Formula

a(n) = Product_{k=0..n} (1+sqrt(5))^k/2+(1-sqrt(5))^k/2.
a(n) = Product_{k=0..n} Sum_{j=0..floor(k/2)} binomial(k,2*j)*5^j. [corrected by Jason Yuen, Feb 12 2025]
a(n) ~ c * (1+sqrt(5))^(n*(n+1)/2) / 2^(n+1), where c = A218490 = 1.3578784076121057013874397... is the Lucas factorial constant. - Vaclav Kotesovec, Jul 11 2015
Showing 1-6 of 6 results.