cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A062073 Decimal expansion of Fibonacci factorial constant.

Original entry on oeis.org

1, 2, 2, 6, 7, 4, 2, 0, 1, 0, 7, 2, 0, 3, 5, 3, 2, 4, 4, 4, 1, 7, 6, 3, 0, 2, 3, 0, 4, 5, 5, 3, 6, 1, 6, 5, 5, 8, 7, 1, 4, 0, 9, 6, 9, 0, 4, 4, 0, 2, 5, 0, 4, 1, 9, 6, 4, 3, 2, 9, 7, 3, 0, 1, 2, 1, 4, 0, 2, 2, 1, 3, 8, 3, 1, 5, 3, 1, 2, 1, 6, 8, 4, 5, 2, 6, 2, 1, 5, 6, 2, 4, 9, 4, 7, 9, 7, 7, 4, 1, 2, 5, 9, 1, 3
Offset: 1

Views

Author

Jason Earls, Jun 27 2001

Keywords

Comments

The Fibonacci factorial constant is associated with the Fibonacci factorial A003266.
Two closely related constants are A194159 and A194160. [Johannes W. Meijer, Aug 21 2011]

Examples

			1.226742010720353244417630230455361655871409690440250419643297301214...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.2.5.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison Wesley, 1990, pp. 478, 571.

Crossrefs

Programs

  • Mathematica
    RealDigits[N[QPochhammer[-1/GoldenRatio^2], 105]][[1]] (* Alonso del Arte, Dec 20 2010 *)
    RealDigits[N[Re[(-1)^(1/24) * GoldenRatio^(1/12) / 2^(1/3) * EllipticThetaPrime[1,0,-I/GoldenRatio]^(1/3)], 120]][[1]] (* Vaclav Kotesovec, Jul 19 2015, after Eric W. Weisstein *)
  • PARI
    \p 1300 a=-1/(1/2+sqrt(5)/2)^2; prod(n=1,17000,(1-a^n))
    
  • PARI
    { default(realprecision, 5080); p=-1/(1/2 + sqrt(5)/2)^2; x=prodinf(k=1, 1-p^k); for (n=1, 5000, d=floor(x); x=(x-d)*10; write("b062073.txt", n, " ", d)) } \\ Harry J. Smith, Jul 31 2009

Formula

C = (1-a)*(1-a^2)*(1-a^3)... 1.2267420... where a = -1/phi^2 and where phi is the Golden ratio = 1/2 + sqrt(5)/2.
C = QPochhammer[ -1/GoldenRatio^2]. [Eric W. Weisstein, Dec 01 2009]
C = A194159 * A194160. [Johannes W. Meijer, Aug 21 2011]
C = exp( Sum_{k>=1} 1/(k*(1-(-(3+sqrt(5))/2)^k)) ). - Vaclav Kotesovec, Jun 08 2013
C = Sum_{k = -inf .. inf} (-1)^((k-1)*k/2) / phi^((3*k-1)*k), where phi = (1 + sqrt(5))/2. - Vladimir Reshetnikov, Sep 20 2016

A256832 Product of first n Pell numbers Pell(1), ... , Pell(n).

Original entry on oeis.org

1, 2, 10, 120, 3480, 243600, 41168400, 16796707200, 16544756592000, 39343431175776000, 225870638380130016000, 3130567047948602021760000, 104751903991408172250111360000, 8462068308233934970708495883520000, 1650314871813323167662424409683488000000
Offset: 1

Views

Author

Vaclav Kotesovec, Apr 10 2015

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[Expand[((1+Sqrt[2])^k-(1-Sqrt[2])^k)/(2*Sqrt[2])],{k,1,n}],{n,1,20}]
    FoldList[Times,LinearRecurrence[{2,1},{1,2},20]] (* Harvey P. Dale, Oct 07 2015 *)
    FoldList[Times, Fibonacci[Range[20], 2]] (* or *)
    Table[Round[(1+Sqrt[2])^((n-1)n/2) QFactorial[n, Sqrt[8]-3]], {n, 20}] (* Vladimir Reshetnikov, Sep 15 2016 *)
  • PARI
    a(n)=my(q=quadgen(8)+1,Q=q); prod(k=2,n, imag(Q*=q)) \\ Charles R Greathouse IV, Feb 14 2022

Formula

a(n) = Product_{k=1..n} A000129(k).
a(n) ~ c * ((1+sqrt(2))^(n*(n+1)/2) / 2^(3*n/2)), where c = A256831 = 1.1419825696677912... . - Vaclav Kotesovec, Apr 10 2015

A099929 Central Pellonomial coefficients.

Original entry on oeis.org

1, 2, 30, 2436, 1166438, 3248730940, 52755584809356, 4992850354675749192, 2754130291777980970686150, 8854642279944231931659815098860, 165923943638796574201560736475319416580, 18121679707218614746613513717704194807763644600
Offset: 0

Views

Author

Ralf Stephan, Nov 03 2004

Keywords

Crossrefs

Programs

  • Maple
    p:= proc(n) p(n):= `if`(n<2, n, 2*p(n-1)+p(n-2)) end:
    f:= proc(n) f(n):= `if`(n=0, 1, p(n)*f(n-1)) end:
    a:= n-> f(2*n)/f(n)^2:
    seq(a(n), n=0..15);  # Alois P. Heinz, Aug 15 2013
  • Mathematica
    Pell[m_]:=Expand[((1+Sqrt[2])^m-(1-Sqrt[2])^m)/(2*Sqrt[2])]; Table[Product[Pell[k],{k,1,2*n}]/(Product[Pell[k],{k,1,n}])^2,{n,0,20}] (* Vaclav Kotesovec, Apr 10 2015 *)
  • Sage
    P=[lucas_number1(n, 2, -1) for n in [0..30]]
    [prod(P[1:2*n+1])/(prod(P[1:n+1]))^2 for n in [0..14]] # Tom Edgar, Apr 10 2015
    
  • Sage
    def a(n): return ((1+sqrt(2))^n^2*q_binomial(2*n, n, -(3-2*sqrt(2)))).simplify_full() # Seiichi Manyama, May 10 2025

Formula

a(n) = A099927(2n, n).
a(n) ~ (1+sqrt(2))^(n^2) / c, where c = A256831 = 1.141982569667791206028... . - Vaclav Kotesovec, Apr 10 2015
a(n) = (1 + sqrt(2))^(n^2) * q-binomial(2*n, n, -(sqrt(2) - 1)^2). - Seiichi Manyama, May 10 2025

A259314 Decimal expansion of partition factorial constant.

Original entry on oeis.org

9, 1, 1, 0, 1, 6, 7, 3, 1, 3, 3, 2, 2, 4, 9, 9, 5, 1, 8, 6, 1, 5, 4, 7, 4, 6, 9, 5, 9, 4, 6, 8, 3, 4, 5, 2, 7, 8, 0, 7, 3, 8, 6, 0, 9, 7, 8, 0, 0, 8, 0, 9, 3, 0, 2, 8, 1, 3, 2, 1, 4, 9, 0, 2, 2, 7, 5, 9, 1, 4, 9, 1, 2, 4, 0, 4, 5, 5, 5, 7, 5, 1, 1, 6, 5, 0, 2, 5, 3, 7, 0, 7, 0, 2, 7, 5, 3, 9, 2, 1, 0, 4, 4, 7, 5, 0
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 24 2015

Keywords

Examples

			0.91101673133224995186154746959468345278073860978008093028132149022759...
		

Crossrefs

Programs

  • Mathematica
    (* The iteration cycle: *) Do[Print[Product[N[PartitionsP[k]/((E^(Sqrt[2/3]*Sqrt[k-1/24]*Pi) * (1 - Sqrt[3/2]/(Sqrt[k-1/24]*Pi))) / (4*Sqrt[3]*(k-1/24))), 150], {k, 1, n}]], {n, 500, 50000, 500}]

Formula

Equals limit n->infinity Product_{k=1..n} p(k) / (exp(Pi*sqrt(2/3*(k-1/24))) / (4*sqrt(3)*(k-1/24)) * (1 - sqrt(3/(2*(k-1/24)))/Pi)), where p(k) is the partition function A000041.

A256799 Catalan number analogs for A099927, the generalized binomial coefficients for Pell numbers (A000129).

Original entry on oeis.org

1, 1, 6, 203, 40222, 46410442, 312163223724, 12237378320283699, 2796071362211148193590, 3723566980632561787914135870, 28901575272390972687956930234335380, 1307480498356321410289575304307661963042110, 344746842780849469098742541704318199701366091840620
Offset: 0

Views

Author

Tom Edgar, Apr 10 2015

Keywords

Comments

One definition of the Catalan numbers is binomial(2*n,n) / (n+1); the current sequence models this definition using the generalized binomial coefficients arising from Pell numbers (A000129).

Examples

			a(5) = Pell(10)..Pell(7)/Pell(5)..Pell(1) = (2378*985*408*169)/(29*12*5*2*1) = 46410442.
a(3) = A099927(6,3)/Pell(3) = 2436/12 = 203.
		

Crossrefs

Programs

  • Maple
    p:= n-> (<<2|1>, <1|0>>^n)[1, 2]:
    a:= n-> mul(p(i), i=n+2..2*n)/mul(p(i), i=1..n):
    seq(a(n), n=0..12);  # Alois P. Heinz, Apr 10 2015
  • Mathematica
    Pell[m_]:=Expand[((1+Sqrt[2])^m-(1-Sqrt[2])^m)/(2*Sqrt[2])]; Table[Product[Pell[k],{k,1,2*n}]/(Product[Pell[k],{k,1,n}])^2 / Pell[n+1],{n,0,15}] (* Vaclav Kotesovec, Apr 10 2015 *)
  • Sage
    P=[lucas_number1(n, 2, -1) for n in [0..30]]
    [1/P[n+1]*prod(P[1:2*n+1])/(prod(P[1:n+1]))^2 for n in [0..14]]

Formula

a(n) = Pell(2n)Pell(2n-1)...Pell(n+2)/Pell(n)Pell(n-1)...Pell(1) = A099927(2*n,n)/Pell(n+1) = A099929(n)/Pell(n+1), where Pell(k) = A000129(k).
a(n) ~ 2^(3/2) * (1+sqrt(2))^(n^2-n-1) / c, where c = A256831 = 1.141982569667791206028... . - Vaclav Kotesovec, Apr 10 2015
Showing 1-5 of 5 results.