A270617 Primes p such that A256832(p) is divisible by p.
2, 5, 7, 13, 17, 23, 29, 31, 37, 41, 47, 53, 59, 61, 71, 73, 79, 89, 97, 101, 103, 109, 113, 127, 137, 149, 151, 157, 167, 173, 179, 181, 191, 193, 197, 199, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 293, 311, 313, 317, 337, 349, 353, 359, 367, 373, 379, 383, 389, 397
Offset: 1
Keywords
Examples
5 is a term because A256832(5) = 3480 is divisible by 5.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
nn = 400; s = FoldList[Times, LinearRecurrence[{2, 1}, {1, 2}, nn]]; Select[Prime@ Range@ PrimePi@ nn, Divisible[s[[#]], #] &] (* Michael De Vlieger, Mar 27 2016, after Harvey P. Dale at A256832 *)
-
PARI
a000129(n) = ([2, 1; 1, 0]^n)[2, 1]; t(n) = prod(k=1, n, Mod(a000129(k), n)); forprime(p=2, 1e3, if(lift(t(p)) == 0, print1(p, ", ")));
-
PARI
is(n)=my(a=Mod(1,n),b=Mod(2,n)); for(i=2,n, if(b==0, return(isprime(n))); [a,b]=[b,2*b+a]); 0 \\ Charles R Greathouse IV, Mar 31 2016
-
PARI
list(lim)=my(v=List([2]), G=factorback(primes([2,lim])), a=1, b=2, t=2, p=2); forprime(q=3,lim, for(n=p+1,q, [a,b]=[b,2*b+a]; t=gcd(t*b, G)); if(t%q==0, listput(v, q)); G/=q; p=q); Vec(v) \\ Charles R Greathouse IV, Mar 31 2016
Comments