cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A270617 Primes p such that A256832(p) is divisible by p.

Original entry on oeis.org

2, 5, 7, 13, 17, 23, 29, 31, 37, 41, 47, 53, 59, 61, 71, 73, 79, 89, 97, 101, 103, 109, 113, 127, 137, 149, 151, 157, 167, 173, 179, 181, 191, 193, 197, 199, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 293, 311, 313, 317, 337, 349, 353, 359, 367, 373, 379, 383, 389, 397
Offset: 1

Views

Author

Altug Alkan, Mar 20 2016

Keywords

Comments

Sequence focuses on the prime numbers because of the complement of this sequence. Primes that are listed in this sequence cannot be generated by function which is related with A213891. See comment section of A213891.

Examples

			5 is a term because A256832(5) = 3480 is divisible by 5.
		

Crossrefs

Programs

  • Mathematica
    nn = 400; s = FoldList[Times, LinearRecurrence[{2, 1}, {1, 2}, nn]]; Select[Prime@ Range@ PrimePi@ nn, Divisible[s[[#]], #] &] (* Michael De Vlieger, Mar 27 2016, after Harvey P. Dale at A256832 *)
  • PARI
    a000129(n) = ([2, 1; 1, 0]^n)[2, 1];
    t(n) = prod(k=1, n, Mod(a000129(k), n));
    forprime(p=2, 1e3, if(lift(t(p)) == 0, print1(p, ", ")));
    
  • PARI
    is(n)=my(a=Mod(1,n),b=Mod(2,n)); for(i=2,n, if(b==0, return(isprime(n))); [a,b]=[b,2*b+a]); 0 \\ Charles R Greathouse IV, Mar 31 2016
    
  • PARI
    list(lim)=my(v=List([2]), G=factorback(primes([2,lim])), a=1, b=2, t=2, p=2); forprime(q=3,lim, for(n=p+1,q, [a,b]=[b,2*b+a]; t=gcd(t*b, G)); if(t%q==0, listput(v, q)); G/=q; p=q); Vec(v) \\ Charles R Greathouse IV, Mar 31 2016

A270834 Numbers n such that A256832(n)/A000129(n-1) is not divisible by n.

Original entry on oeis.org

3, 7, 9, 11, 19, 23, 31, 43, 47, 67, 71, 83, 107, 127, 131, 139, 151, 163, 167, 191, 211, 263, 271, 283, 307, 311, 331, 347, 359, 367, 383, 431, 439, 463, 467, 479, 491, 499, 503, 523, 547, 563, 571, 587, 619, 631, 647, 659, 691, 719, 727, 739, 743, 787, 811, 823, 839, 859, 863, 883, 887
Offset: 1

Views

Author

Altug Alkan, Mar 23 2016

Keywords

Comments

The computation of integers n such that A256832(n) is not divisible by n, leads to A213891. This sequence contains A213891 as a subsequence.
It appears that 9 is the only composite number in this sequence.
No composites below 10^7. - Charles R Greathouse IV, Apr 20 2016
No composites below 2*10^7. - Charles R Greathouse IV, May 06 2016

Examples

			7 is a term because 1*2*5*12*29*169 = 588120 is not divisible by 7.
		

Crossrefs

Programs

  • Mathematica
    With[{s = Sqrt@ 2}, Select[Range[2, 90], ! Divisible[Product[Expand[((1 + s)^k - (1 - s)^k)/2 s], {k, #}]/Simplify[((1 + s)^(# - 1) - (1 - s)^(# -
    1))/(2 s)], #] &]] (* Michael De Vlieger, Mar 24 2016, after Vaclav Kotesovec at A256832 and Michael Somos at A000129 *)
  • PARI
    a000129(n) = ([2, 1; 1, 0]^n)[2, 1];
    t(n) = Mod((prod(k=1, n, a000129(k)) / a000129(n-1)), n);
    for(n=2, 1e3, if(lift(t(n)) != 0, print1(n, ", ")));
    
  • PARI
    is(n)=my(a,b=Mod(1,n),t=b); for(k=2,n-2,[a,b]=[b,a+2*b]; t*=b; if(t==0, return(0))); t*(2*a+5*b) && n>2 \\ Charles R Greathouse IV, Mar 24 2016

A270474 Integers k such that A256832(k) is not divisible by k*(k+1)/2.

Original entry on oeis.org

2, 3, 10, 11, 18, 19, 42, 43, 66, 67, 82, 83, 106, 107, 130, 131, 138, 139, 162, 163, 210, 211, 282, 283, 306, 307, 330, 331, 346, 347, 466, 467, 490, 491, 498, 499, 522, 523, 546, 547, 562, 563, 570, 571, 586, 587, 618, 619, 658, 659, 690, 691, 738, 739, 786, 787, 810, 811, 858, 859
Offset: 1

Views

Author

Altug Alkan, Mar 17 2016

Keywords

Comments

It appears that the odd numbers in the sequence are prime.
This holds at least up to a million. - Charles R Greathouse IV, Feb 24 2022

Examples

			3 is a term because (1*2*5) is not divisible by (1+2+3).
		

Crossrefs

Programs

  • Mathematica
    nn = 10^3; Function[k, Select[Range@ nn, ! Divisible[k[[#]], # (# + 1)/2] &]]@ FoldList[Times, LinearRecurrence[{2, 1}, {1, 2}, nn]] (* Michael De Vlieger, Mar 19 2016, after Harvey P. Dale at A256832 *)
  • PARI
    a000129(n) = ([2, 1; 1, 0]^n)[2, 1];
    f(n) = prod(k=1, n, a000129(k)); \\ A256832
    for(n=1, 1e3, if(f(n) % (n*(n+1)/2) != 0, print1(n, ", ")));
    
  • PARI
    {g(n) = my(t, m=1);if( n<2, 0, while(1, t=contfracpnqn(concat([n,vector(m,i,2),n])); t=contfrac(n*t[1,1]/t[2, 1]); if(t[1]Bill McEachen, Feb 14 2022 (from A213891 code, faster)
    
  • PARI
    is(n)=my(m=n^2+n,q=Mod([2, 1; 1, 0],m),Q=q,P=Mod(1,m)); for(k=2,n, P*=(Q*=q)[2,1]; if(P==0, return(0))); 1 \\ Charles R Greathouse IV, Feb 14 2022

A270491 a(n) = A256832(n) mod A003266(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 11138400, 2194264800, 970377408000, 194939999654400, 23386660116019200, 63018468582765696000, 81934202708323789824000, 118589068612624434080256000, 230237098382438262288036864000
Offset: 1

Views

Author

Altug Alkan, Mar 18 2016

Keywords

Examples

			a(5) = 0 because (1*2*5*12*29) mod (1*1*2*3*5) = 0.
		

Crossrefs

Programs

  • Mathematica
    Table[Mod[Product[Expand[((1 + Sqrt@ 2)^j - (1 - Sqrt@ 2)^j)/(2 Sqrt@ 2)], {j, n}], Product[Fibonacci@ k, {k, n}]], {n, 18}] (* Michael De Vlieger, Mar 18 2016, after Vaclav Kotesovec at A256832 *)
  • PARI
    a000129(n) = ([2, 1; 1, 0]^n)[2, 1];
    a256832(n) = prod(k=1, n, a000129(k));
    a003266(n) = prod(k=1, n, fibonacci(k));
    for(n=1, 20, print1(a256832(n) % a003266(n), ", "));

A099927 Pellonomial triangle P(k,n) read by rows.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 5, 5, 1, 1, 12, 30, 12, 1, 1, 29, 174, 174, 29, 1, 1, 70, 1015, 2436, 1015, 70, 1, 1, 169, 5915, 34307, 34307, 5915, 169, 1, 1, 408, 34476, 482664, 1166438, 482664, 34476, 408, 1, 1, 985, 200940, 6791772, 39618670, 39618670, 6791772, 200940, 985, 1
Offset: 0

Views

Author

Ralf Stephan, Nov 03 2004

Keywords

Comments

Also (signed) coefficients of solutions to 0 = Sum[i=0..k+1, x(i)*Pell(m+i)^k ].
Sagan and Savage give two combinatorial interpretations for entry T(n,k) in terms of statistics on integer partitions fitting inside a k x (n-k) rectangle. They also relate the values T(n,k) to q-binomial coefficients evaluated at q = -(3 + 2*sqrt(2)). - Peter Bala, Mar 15 2013

Examples

			Triangle starts:
  1;
  1,   1;
  1,   2,    1;
  1,   5,    5,     1;
  1,  12,   30,    12,     1;
  1,  29,  174,   174,    29,    1;
  1,  70, 1015,  2436,  1015,   70,   1;
  1, 169, 5915, 34307, 34307, 5915, 169, 1;
  ...
		

Crossrefs

Columns include A000129, A084158, A099930, A099931, A383719.
Row sums are in A099928. Central column is in A099929.

Programs

  • Maple
    p:= proc(n) p(n):= `if`(n<2, n, 2*p(n-1)+p(n-2)) end:
    f:= proc(n) f(n):= `if`(n=0, 1, p(n)*f(n-1)) end:
    T:= (n, k)-> f(n)/(f(k)*f(n-k)):
    seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Aug 15 2013
  • Mathematica
    p[n_] := p[n] = If[n<2, n, 2*p[n-1] + p[n-2]]; f[n_] := f[n] = If[n == 0, 1, p[n] * f[n-1]]; T[n_, k_] := f[n]/(f[k]*f[n-k]); Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 19 2015, after Alois P. Heinz *)

Formula

P(k, n) = Prod[i=k-n+1..k, Pell(i)] / Prod[i=1..n, Pell(i)], with Pell(n) = A000129(n).
From Peter Bala, Mar 15 2013: (Start)
In terms of the Pell numbers, Pell(n) = A000129(n), the triangle entry T(n,k) = [n]!/([k]!*[n-k]!), where [n]! := Pell(1)*...*Pell(n) for n >= 1, with the convention [0]! = 1.
Define E(x) = 1 + sum {n>=0} x^n/[n]!. Then a generating function for this triangle is E(z)*E(x*z) = 1 + (1 + x)*z + (1 + 2*x + x^2)*z^2/[2]! + (1 + 5*x + 5*x^2 + x^3)*z^3/[3]! + ... (End)
G.f. of column k: x^k * exp( Sum_{j>=1} Pell((k+1)*j)/Pell(j) * x^j/j ). - Seiichi Manyama, May 07 2025

A256831 Decimal expansion of Pell factorial constant.

Original entry on oeis.org

1, 1, 4, 1, 9, 8, 2, 5, 6, 9, 6, 6, 7, 7, 9, 1, 2, 0, 6, 0, 2, 8, 0, 4, 3, 3, 3, 8, 3, 6, 7, 8, 6, 0, 1, 5, 0, 8, 6, 4, 7, 3, 0, 4, 8, 2, 4, 0, 8, 5, 4, 0, 7, 9, 1, 5, 5, 6, 2, 5, 4, 3, 5, 2, 4, 4, 9, 8, 4, 3, 7, 8, 5, 4, 8, 0, 6, 2, 0, 8, 6, 0, 7, 8, 2, 5, 0, 6, 3, 7, 0, 6, 0, 9, 2, 5, 3, 3, 4, 7, 8, 1, 6, 3, 6
Offset: 1

Views

Author

Vaclav Kotesovec, Apr 10 2015

Keywords

Examples

			1.141982569667791206028043338367860150864730482408540791556...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[QPochhammer[2*Sqrt[2]-3], 105]][[1]]

Formula

Equals limit n->infinity A256832(n) / ((1+sqrt(2))^(n*(n+1)/2) / 2^(3*n/2)).

A256799 Catalan number analogs for A099927, the generalized binomial coefficients for Pell numbers (A000129).

Original entry on oeis.org

1, 1, 6, 203, 40222, 46410442, 312163223724, 12237378320283699, 2796071362211148193590, 3723566980632561787914135870, 28901575272390972687956930234335380, 1307480498356321410289575304307661963042110, 344746842780849469098742541704318199701366091840620
Offset: 0

Views

Author

Tom Edgar, Apr 10 2015

Keywords

Comments

One definition of the Catalan numbers is binomial(2*n,n) / (n+1); the current sequence models this definition using the generalized binomial coefficients arising from Pell numbers (A000129).

Examples

			a(5) = Pell(10)..Pell(7)/Pell(5)..Pell(1) = (2378*985*408*169)/(29*12*5*2*1) = 46410442.
a(3) = A099927(6,3)/Pell(3) = 2436/12 = 203.
		

Crossrefs

Programs

  • Maple
    p:= n-> (<<2|1>, <1|0>>^n)[1, 2]:
    a:= n-> mul(p(i), i=n+2..2*n)/mul(p(i), i=1..n):
    seq(a(n), n=0..12);  # Alois P. Heinz, Apr 10 2015
  • Mathematica
    Pell[m_]:=Expand[((1+Sqrt[2])^m-(1-Sqrt[2])^m)/(2*Sqrt[2])]; Table[Product[Pell[k],{k,1,2*n}]/(Product[Pell[k],{k,1,n}])^2 / Pell[n+1],{n,0,15}] (* Vaclav Kotesovec, Apr 10 2015 *)
  • Sage
    P=[lucas_number1(n, 2, -1) for n in [0..30]]
    [1/P[n+1]*prod(P[1:2*n+1])/(prod(P[1:n+1]))^2 for n in [0..14]]

Formula

a(n) = Pell(2n)Pell(2n-1)...Pell(n+2)/Pell(n)Pell(n-1)...Pell(1) = A099927(2*n,n)/Pell(n+1) = A099929(n)/Pell(n+1), where Pell(k) = A000129(k).
a(n) ~ 2^(3/2) * (1+sqrt(2))^(n^2-n-1) / c, where c = A256831 = 1.141982569667791206028... . - Vaclav Kotesovec, Apr 10 2015
Showing 1-7 of 7 results.