A099927 Pellonomial triangle P(k,n) read by rows.
1, 1, 1, 1, 2, 1, 1, 5, 5, 1, 1, 12, 30, 12, 1, 1, 29, 174, 174, 29, 1, 1, 70, 1015, 2436, 1015, 70, 1, 1, 169, 5915, 34307, 34307, 5915, 169, 1, 1, 408, 34476, 482664, 1166438, 482664, 34476, 408, 1, 1, 985, 200940, 6791772, 39618670, 39618670, 6791772, 200940, 985, 1
Offset: 0
Examples
Triangle starts: 1; 1, 1; 1, 2, 1; 1, 5, 5, 1; 1, 12, 30, 12, 1; 1, 29, 174, 174, 29, 1; 1, 70, 1015, 2436, 1015, 70, 1; 1, 169, 5915, 34307, 34307, 5915, 169, 1; ...
Links
- Alois P. Heinz, Rows n = 0..56, flattened
- Tom Edgar and Michael Z. Spivey, Multiplicative functions, generalized binomial coefficients, and generalized Catalan numbers, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.6.
- S. Falcon, On The Generating Functions of the Powers of the K-Fibonacci Numbers, Scholars Journal of Engineering and Technology (SJET), 2014; 2 (4C):669-675.
- B. Sagan and C. Savage, Combinatorial Interpretations of Binomial Coefficient Analogues Related to Lucas Sequences, arXiv:0911.3159 [math.CO], 2009.
- B. Sagan and C. Savage, Combinatorial Interpretations of Binomial Coefficient Analogues Related to Lucas Sequences, Integers 10 (2010), 697-703, A52.
Crossrefs
Programs
-
Maple
p:= proc(n) p(n):= `if`(n<2, n, 2*p(n-1)+p(n-2)) end: f:= proc(n) f(n):= `if`(n=0, 1, p(n)*f(n-1)) end: T:= (n, k)-> f(n)/(f(k)*f(n-k)): seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Aug 15 2013
-
Mathematica
p[n_] := p[n] = If[n<2, n, 2*p[n-1] + p[n-2]]; f[n_] := f[n] = If[n == 0, 1, p[n] * f[n-1]]; T[n_, k_] := f[n]/(f[k]*f[n-k]); Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 19 2015, after Alois P. Heinz *)
Formula
P(k, n) = Prod[i=k-n+1..k, Pell(i)] / Prod[i=1..n, Pell(i)], with Pell(n) = A000129(n).
From Peter Bala, Mar 15 2013: (Start)
In terms of the Pell numbers, Pell(n) = A000129(n), the triangle entry T(n,k) = [n]!/([k]!*[n-k]!), where [n]! := Pell(1)*...*Pell(n) for n >= 1, with the convention [0]! = 1.
Define E(x) = 1 + sum {n>=0} x^n/[n]!. Then a generating function for this triangle is E(z)*E(x*z) = 1 + (1 + x)*z + (1 + 2*x + x^2)*z^2/[2]! + (1 + 5*x + 5*x^2 + x^3)*z^3/[3]! + ... (End)
G.f. of column k: x^k * exp( Sum_{j>=1} Pell((k+1)*j)/Pell(j) * x^j/j ). - Seiichi Manyama, May 07 2025
Comments