A070866 Smallest prime such that the difference of successive terms is nondecreasing.
2, 3, 5, 7, 11, 17, 23, 29, 37, 47, 59, 71, 83, 97, 113, 131, 149, 167, 191, 223, 257, 293, 331, 373, 419, 467, 521, 577, 641, 709, 787, 877, 967, 1061, 1163, 1277, 1399, 1523, 1657, 1801, 1949, 2099, 2251, 2411, 2579, 2749, 2927, 3109, 3299, 3491, 3691, 3907
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A070865.
Programs
-
Julia
using Primes function A070866(bound) a, b = 2, 3 P = [a, b] while true p = nextprime(b + (b - a)) p > bound && break push!(P, p) a, b = b, p end P end A070866(100000) |> println # Peter Luschny, Dec 23 2019
-
Mathematica
d = 2; p = 2; t = {2, 3}; Do[p = NextPrime[p + d - 1]; d = p - t[[-1]]; AppendTo[t, p], {98}]; t (* T. D. Noe, Nov 21 2011 *)
-
PARI
s=1; t=1; for(n=1,100,s=s+t; while(isprime(s+t)==0,t++); print1(s+t,","))
Formula
a(1)=2, a(2)=3, a(n) = A007918(2*a(n-1) - a(n-2)). - Reinhard Zumkeller, Jul 08 2004
Extensions
More terms from Benoit Cloitre, May 20 2002