cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A070876 Binary expansion is 1xx100...0 where xx = 00 or 11.

Original entry on oeis.org

9, 15, 18, 30, 36, 60, 72, 120, 144, 240, 288, 480, 576, 960, 1152, 1920, 2304, 3840, 4608, 7680, 9216, 15360, 18432, 30720, 36864, 61440, 73728, 122880, 147456, 245760, 294912, 491520, 589824, 983040, 1179648, 1966080, 2359296, 3932160
Offset: 0

Views

Author

N. J. A. Sloane, May 19 2002

Keywords

Crossrefs

Cf. A070875.

Programs

  • Magma
    [n le 2 select 6*n+3 else 2*Self(n-2): n in [1..38]]; // Bruno Berselli, Mar 02 2011
    
  • Mathematica
    a = {}; Do[a = Append[a, FromDigits[ Join[{1, 0, 0, 1}, Table[0, {n}]], 2]]; a = Append[a, FromDigits[ Join[{1, 1, 1, 1}, Table[0, {n}]], 2]], {n, 0, 20}]; a
    CoefficientList[Series[3 (3 + 5 x) / (1 - 2 x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 19 2013 *)
    LinearRecurrence[{0,2},{9,15},40] (* Harvey P. Dale, Aug 06 2021 *)
  • PARI
    my(x='x+O('x^99)); Vec(3*(3+5*x)/(1-2*x^2)) \\ Altug Alkan, Sep 20 2018

Formula

From Bruno Berselli, Mar 02 2011: (Start)
G.f.: 3*(3+5*x)/(1-2*x^2).
a(n) = 3*(4-(-1)^n)*2^((2*n+(-1)^n-1)/4). Therefore: a(n) = 9*2^(n/2) for n even, otherwise a(n) = 15*2^((n-1)/2).
a(n) = 2*a(n-2) for n>1. (End)
Sum_{n>=0} 1/a(n) = 16/45. - Amiram Eldar, Mar 28 2022

Extensions

More terms from Robert G. Wilson v, May 20 2002