cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A070888 Numerator of Sum_{k=1..n} mu(k)/k.

Original entry on oeis.org

1, 1, 1, 1, -1, 2, -1, -1, -1, 19, -1, -1, -2323, -89, 304, 304, 163, 163, -81988, -81988, -15019, 410857, -249979, -249979, -249979, 4165258, 4165258, 4165258, 9246047, -65721449, -4193929329, -4193929329, -6504197377, -302679716, 2562470143
Offset: 1

Views

Author

Donald S. McDonald, May 17 2002

Keywords

Comments

Sum_{k>0} mu(k)/k = limit_{n->oo} A070888(n)/A070889(n) = 0. - Jean-François Alcover, Apr 18 2013. This is equivalent to the Prime Number Theorem! - N. J. A. Sloane, Feb 04 2022

Examples

			a(6) = 2 because 1-1/2-1/3-1/5+1/6 = 4/30 = 2/15.
		

References

  • Harold M. Edwards, Riemann's Zeta Function, Dover Publications, New York, 1974 (ISBN 978-0-486-41740-0), p. 92.
  • Edmund Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Chelsea Publishing, NY 1953, p. 568.

Crossrefs

Cf. A008683, A068337, A070889 (denominators).

Programs

  • Maple
    T:= 0:
    for n from 1 to 100 do
      T:= T + numtheory:-mobius(n)/n;
      A[n]:= numer(T)
    od:
    seq(A[n],n=1..100); # Robert Israel, Aug 04 2014
  • Mathematica
    Table[ Numerator[ Sum[ MoebiusMu[k]/k, {k, 1, n}]], {n, 1, 37}]
  • PARI
    t = 0; v = []; for( n = 1, 60, t= t + moebius( n) / n; v = concat( v, numerator( t))); v \\ adapted to latest PARI version by Michel Marcus, Aug 04 2014
    
  • Python
    from functools import lru_cache
    from sympy import harmonic
    @lru_cache(maxsize=None)
    def f(n):
        if n <= 1:
            return 1
        c, j = 1, 2
        k1 = n//j
        while k1 > 1:
            j2 = n//k1 + 1
            c += (harmonic(j-1)-harmonic(j2-1))*f(k1)
            j, k1 = j2, n//j2
        return c+harmonic(j-1)-harmonic(n)
    def A070888(n): return f(n).numerator # Chai Wah Wu, Nov 03 2023

Extensions

Edited by Robert G. Wilson v, Jun 10 2002