A070888 Numerator of Sum_{k=1..n} mu(k)/k.
1, 1, 1, 1, -1, 2, -1, -1, -1, 19, -1, -1, -2323, -89, 304, 304, 163, 163, -81988, -81988, -15019, 410857, -249979, -249979, -249979, 4165258, 4165258, 4165258, 9246047, -65721449, -4193929329, -4193929329, -6504197377, -302679716, 2562470143
Offset: 1
Examples
a(6) = 2 because 1-1/2-1/3-1/5+1/6 = 4/30 = 2/15.
References
- Harold M. Edwards, Riemann's Zeta Function, Dover Publications, New York, 1974 (ISBN 978-0-486-41740-0), p. 92.
- Edmund Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Chelsea Publishing, NY 1953, p. 568.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..2376 (terms 1..1906 from Robert Israel)
- F. K. Richter, A new elementary proof of the Prime Number Theorem, arXiv preprint arXiv:2002.03255 [math.NT], 2020-2021.
- Harold N. Shapiro, Some assertions equivalent to the prime number theorem for arithmetic progressions, Communications on Pure and Applied Mathematics 2.2-3 (1949): 293-308.
Programs
-
Maple
T:= 0: for n from 1 to 100 do T:= T + numtheory:-mobius(n)/n; A[n]:= numer(T) od: seq(A[n],n=1..100); # Robert Israel, Aug 04 2014
-
Mathematica
Table[ Numerator[ Sum[ MoebiusMu[k]/k, {k, 1, n}]], {n, 1, 37}]
-
PARI
t = 0; v = []; for( n = 1, 60, t= t + moebius( n) / n; v = concat( v, numerator( t))); v \\ adapted to latest PARI version by Michel Marcus, Aug 04 2014
-
Python
from functools import lru_cache from sympy import harmonic @lru_cache(maxsize=None) def f(n): if n <= 1: return 1 c, j = 1, 2 k1 = n//j while k1 > 1: j2 = n//k1 + 1 c += (harmonic(j-1)-harmonic(j2-1))*f(k1) j, k1 = j2, n//j2 return c+harmonic(j-1)-harmonic(n) def A070888(n): return f(n).numerator # Chai Wah Wu, Nov 03 2023
Extensions
Edited by Robert G. Wilson v, Jun 10 2002
Comments