A070909 Triangle read by rows giving successive states of cellular automaton generated by "Rule 28" and by "Rule 156".
1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0
Offset: 0
Examples
From _Paul Barry_, Nov 03 2010: (Start) Triangle begins 1; 1, 1; 1, 0, 1; 1, 0, 1, 1; 1, 0, 1, 0, 1; 1, 0, 1, 0, 1, 1; 1, 0, 1, 0, 1, 0, 1; 1, 0, 1, 0, 1, 0, 1, 1; 1, 0, 1, 0, 1, 0, 1, 0, 1; 1, 0, 1, 0, 1, 0, 1, 0, 1, 1; Production matrix begins 1, 1; 0, -1, 1; 0, -1, 1, 1; 0, 0, 0, -1, 1; 0, 0, 0, -1, 1, 1; 0, 0, 0, 0, 0, -1, 1; 0, 0, 0, 0, 0, -1, 1, 1; 0, 0, 0, 0, 0, 0, 0, -1, 1; 0, 0, 0, 0, 0, 0, 0, -1, 1, 1; 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1; (End)
References
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; Chapter 3.
Links
- Peter Bala, Matrices with repeated columns - the generalised Appell groups
- D. E. Davenport, L. W. Shapiro and L. C. Woodson, The Double Riordan Group, The Electronic Journal of Combinatorics, 18(2) (2012).
- Eric Weisstein's World of Mathematics, Rule 28
- Index entries for sequences related to cellular automata
Programs
-
Mathematica
rows = 14; ca = CellularAutomaton[28, {{1}, 0}, rows-1]; Flatten[Table[ca[[k, 1 ;; k]], {k, 1, rows}]] (* Jean-François Alcover, May 24 2012 *)
Comments