cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A070909 Triangle read by rows giving successive states of cellular automaton generated by "Rule 28" and by "Rule 156".

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0
Offset: 0

Views

Author

Hans Havermann, May 26 2002

Keywords

Comments

Row n has length n+1.
From Gary W. Adamson, May 15 2010: (Start)
Eigensequence of the triangle = A038754 (i.e., 1, 1, 2, 3, 6, 9, 18, ...) shifts to the left with multiplication by triangle A070909.
Binomial transform of A070909 = triangle A177953. (End)
From Paul Barry, Nov 03 2010: (Start)
Generalized (conditional) Riordan array with k-th column generated by x^k/(1-x) if k is even, x^k otherwise.
A181651 is an eigentriangle. Inverse is A181650. (End)
From Peter Bala, Aug 15 2021: (Start)
Double Riordan array (1/(1 - x); x*(1 - x), x/(1 - x)) as defined in Davenport et al. The inverse array is the double Riordan array (1 - x - x^2; x/(1 - x - x^2), x*(1 - x - x^2)).
In general, double Riordan arrays of the form (g(x); x/g(x), x*g(x)), where g(x) = 1 + g_1*x + g_2*x^2 + ..., form a group under matrix multiplication with the group law given by (g(x); x/g(x), x*g(x)) * (G(x); x/G(x), x*G(x)) = (h(x); x/h(x), x*h(x)), where h(x) = G(x) + (g(x) - 1)*(G(x) + G(-x))/2. The inverse array of (g(x); x/g(x), x*g(x)) equals (f(x); x/f(x), x*f(x)), where f(x) = (2 - (g(x) - g(-x)))/(g(x) + g(-x)). (End)

Examples

			From _Paul Barry_, Nov 03 2010: (Start)
Triangle begins
  1;
  1, 1;
  1, 0, 1;
  1, 0, 1, 1;
  1, 0, 1, 0, 1;
  1, 0, 1, 0, 1, 1;
  1, 0, 1, 0, 1, 0, 1;
  1, 0, 1, 0, 1, 0, 1, 1;
  1, 0, 1, 0, 1, 0, 1, 0, 1;
  1, 0, 1, 0, 1, 0, 1, 0, 1, 1;
Production matrix begins
  1,  1;
  0, -1,  1;
  0, -1,  1,  1;
  0,  0,  0, -1,  1;
  0,  0,  0, -1,  1,  1;
  0,  0,  0,  0,  0, -1,  1;
  0,  0,  0,  0,  0, -1,  1,  1;
  0,  0,  0,  0,  0,  0,  0, -1,  1;
  0,  0,  0,  0,  0,  0,  0, -1,  1,  1;
  0,  0,  0,  0,  0,  0,  0,  0,  0, -1,  1; (End)
		

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; Chapter 3.

Crossrefs

Inverse array A181650. Cf. A038754, A266502, A266508.

Programs

  • Mathematica
    rows = 14; ca = CellularAutomaton[28, {{1}, 0}, rows-1]; Flatten[Table[ca[[k, 1 ;; k]], {k, 1, rows}]] (* Jean-François Alcover, May 24 2012 *)