cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A177990 Triangle read by rows, variant of A070909, a cellular automaton.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1
Offset: 1

Views

Author

Gary W. Adamson, May 16 2010

Keywords

Comments

Examples

			First few rows of the triangle =
1;
0, 1;
0, 1, 1;
0, 1, 0, 1;
0, 1, 0, 1, 1;
0, 1, 0, 1, 0, 1;
0, 1, 0, 1, 0, 1, 1;
0, 1, 0, 1, 0, 1, 0, 1;
0, 1, 0, 1, 0, 1, 0, 1, 1;
0, 1, 0, 1, 0, 1, 0, 1, 0, 1;
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1;
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1;
...
		

Crossrefs

Programs

  • Mathematica
    rows = 10; ca = CellularAutomaton[28, {{1}, 0}, rows]; Table[ca[[k, 2 ;; k]], {k, 2, rows+1}] // Flatten (* Jean-François Alcover, Jul 12 2017 *)

Formula

Infinite lower triangular matrix, variant of A070909: Columns alternate between (1,0,0,0,...) and (1,1,1,...); whereas A070909 leftmost column = (1,1,1,...).

A177994 Triangle read by rows, A177990 * A070909.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 4, 1, 3, 1, 2, 1, 1, 4, 1, 3, 1, 2, 1, 1, 1, 5, 1, 4, 1, 3, 1, 2, 1, 1, 5, 1, 4, 1, 3, 1, 2, 1, 1, 1
Offset: 0

Views

Author

Gary W. Adamson, May 16 2010

Keywords

Comments

Row sums = A101881: (1, 2, 4, 5, 8, 9, 13, 14,...).
Double Riordan array ( 1/((1 - x)*(1 - x^2)); x*(1 - x^2), x/(1 - x^2) ) as defined in Davenport et al. The set of double Riordan arrays of the form ( g(x); x*f_1(x), x*f_2(x) ), where f_1(x)*f_2(x) = 1, forms a group under matrix multiplication. Here g, f_1 and f_2 denote power series with constant term equal to 1. This is the array (( 1/((1 - x)*(1 - x^2)), 1/(1 - x) )) in the notation of the Bala link. - Peter Bala, Aug 26 2021

Examples

			First few rows of the triangle =
1;
1, 1;
2, 1, 1;
2, 1, 1, 1;
3, 1, 2, 1, 1;
3, 1, 2, 1, 1, 1;
4, 1, 3, 1, 2, 1, 1;
4, 1, 3, 1, 2, 1, 1, 1;
5, 1, 4, 1, 3, 1, 2, 1, 1;
5, 1, 4, 1, 3, 1, 2, 1, 1, 1;
6, 1, 5, 1, 4, 1, 3, 1, 2, 1, 1;
6, 1, 5, 1, 4, 1, 3, 1, 2, 1, 1, 1;
7, 1, 6, 1, 5, 1, 4, 1, 3, 1, 2, 1, 1;
7, 1, 6, 1, 5, 1, 4, 1, 3, 1, 2, 1, 1, 1;
...
		

Crossrefs

Programs

  • Haskell
    a177994 n k = a177994_tabl !! n !! k
    a177994_row n = a177994_tabl !! n
    a177994_tabl = [1] : [1,1] : map f a177994_tabl
                   where f xs@(x:_) = (x + 1) : 1 : xs
    -- Reinhard Zumkeller, Feb 20 2015

Formula

As infinite lower triangular matrices, A177990 * A070909

A177991 Triangle read by rows, A070909 * A177990.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 4, 1, 3, 1, 2, 1, 1, 1, 4, 1, 3, 1, 2, 1, 1, 1, 1, 5, 1, 4, 1, 3, 1, 2, 1, 1, 1, 5, 1, 4, 1, 3, 1, 2, 1, 1, 1
Offset: 0

Views

Author

Gary W. Adamson, May 16 2010

Keywords

Comments

Row sums = A117142: (1, 2, 3, 5, 6, 9,...)

Examples

			First few rows of the triangle =
1;
1, 1;
1, 1, 1;
1, 2, 1, 1;
1, 2, 1, 1, 1;
1, 3, 1, 2, 1, 1;
1, 3, 1, 2, 1, 1, 1;
1, 4, 1, 3, 1, 2, 1, 1;
1, 4, 1, 3, 1, 2, 1, 1, 1;
1, 5, 1, 4, 1, 3, 1, 2, 1, 1;
1, 5, 1, 4, 1, 3, 1, 2, 1, 1, 1;
1, 6, 1, 5, 1, 4, 1, 3, 1, 2, 1, 1;
1, 6, 1, 5, 1, 4, 1, 3, 1, 2, 1, 1, 1;
1, 7, 1, 6, 1, 5, 1, 4, 1, 3, 1, 2, 1, 1;
1, 7, 1, 6, 1, 5, 1, 4, 1, 3, 1, 2, 1, 1, 1;
...
		

Crossrefs

Formula

As infinite lower triangular matrices, A070909 * A177990

Extensions

a(28)=1 inserted before the first "4" by Georg Fischer, Dec 28 2021

A177954 Triangle read by rows, A070909 * Pascal's triangle.

Original entry on oeis.org

1, 2, 1, 2, 2, 1, 3, 5, 4, 1, 3, 6, 7, 4, 1, 4, 11, 17, 14, 6, 1, 4, 12, 22, 24, 16, 6, 1, 5, 19, 43, 59, 51, 27, 8, 1, 5, 20, 50, 80, 86, 62, 29, 8, 1, 6, 29, 86, 164, 212, 188, 113, 44, 10, 1
Offset: 0

Views

Author

Gary W. Adamson, May 15 2010

Keywords

Comments

Row sums = A086893: (1, 3, 5, 13, 21, 53, 85,...).

Examples

			First few rows of the triangle =
1;
2, 1;
2, 2, 1;
3, 5, 4, 1;
3, 6, 7, 4, 1;
4, 11, 17, 14, 6, 1;
4, 12, 22, 24, 16, 6, 1;
5, 19, 43, 59, 51, 27, 8, 1;
5, 20, 50, 80, 86, 62, 29, 8, 1;
6, 29, 86, 164, 212, 188, 113, 44, 10, 1;
6, 30, 95, 200, 296, 314, 239, 128, 46, 10, 1;
7, 41, 150, 365, 626, 776, 701, 458, 211, 65, 12, 1;
...
		

Crossrefs

Formula

Triangle read by rows, A070909 * A007318

Extensions

a(46) corrected by Georg Fischer, May 20 2022

A181650 Inverse of number triangle A070909.

Original entry on oeis.org

1, -1, 1, -1, 0, 1, 0, 0, -1, 1, 0, 0, -1, 0, 1, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 1
Offset: 0

Views

Author

Paul Barry, Nov 03 2010

Keywords

Comments

Generalized (conditional) Riordan array with k-th column generated by x^k*(1-x-x^2) if k is even, x^k otherwise.
Triangle T(n,k), read by rows, given by (-1,2,-1/2,-1/2,0,0,0,0,0,0,0,...) DELTA (1,0,-1,0,0,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 19 2011
Double Riordan array (1 - x - x^2; x/(1 - x - x^2), x*(1 - x - x^2)) as defined in Davenport et al. - Peter Bala, Aug 15 2021

Examples

			Triangle begins
   1,
  -1,  1,
  -1,  0,  1,
   0,  0, -1,  1,
   0,  0, -1,  0,  1,
   0,  0,  0,  0, -1,  1,
   0,  0,  0,  0, -1,  0,  1,
   0,  0,  0,  0,  0,  0, -1,  1,
   0,  0,  0,  0,  0,  0, -1,  0,  1,
   0,  0,  0,  0,  0,  0,  0,  0, -1,  1,
   0,  0,  0,  0,  0,  0,  0,  0, -1,  0,  1
Production matrix begins
  -1,  1,
  -2,  1,  1,
  -1,  1, -1,  1,
  -1,  1, -2,  1,  1,
  -1,  1, -1,  1, -1,  1,
  -1,  1, -1,  1, -2,  1,  1,
  -1,  1, -1,  1, -1,  1, -1,  1,
  -1,  1, -1,  1, -1,  1, -2,  1,  1,
  -1,  1, -1,  1, -1,  1, -1,  1, -1,  1
		

Crossrefs

Formula

G.f.: (1+(y-1)*x-x^2)/((1-y*x)*(1+y*x)). - Philippe Deléham, Nov 19 2011

A181651 Eigentriangle of number triangle A070909.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 6, 2, 2, 1, 1, 9, 3, 3, 1, 1, 1, 18, 6, 6, 2, 2, 1, 1, 27, 9, 9, 3, 3, 1, 1, 1, 54, 18, 18, 6, 6, 2, 2, 1, 1, 81, 27, 27, 9, 9, 3, 3, 1, 1, 1, 162, 54, 54, 18, 18, 6, 6, 2, 2, 1, 1
Offset: 0

Views

Author

Paul Barry, Nov 03 2010

Keywords

Comments

First column is (essentially) A038754. Row sums are A068911. Inverse is A181652.
Generalized (conditional) Riordan array with k-th column generated by
x^k*(1+x-x^2)/(1-3x^2) if k is even,
(1+x-2x^2-x^3)/(1-3x^2) if k is odd.

Examples

			Triangle begins
    1;
    1,  1;
    2,  1,  1;
    3,  1,  1,  1;
    6,  2,  2,  1,  1;
    9,  3,  3,  1,  1,  1;
   18,  6,  6,  2,  2,  1,  1;
   27,  9,  9,  3,  3,  1,  1,  1;
   54, 18, 18,  6,  6,  2,  2,  1,  1;
   81, 27, 27,  9,  9,  3,  3,  1,  1,  1;
  162, 54, 54, 18, 18,  6,  6,  2,  2,  1,  1;
		

Crossrefs

A177953 Triangle read by rows, binomial transform of triangle A070909.

Original entry on oeis.org

1, 2, 1, 4, 2, 1, 8, 3, 4, 1, 16, 4, 11, 4, 1, 32, 5, 26, 10, 6, 1, 64, 6, 57, 20, 22, 6, 1, 128, 7, 120, 35, 64, 21, 8, 1, 256, 8, 247, 56, 163, 56, 37, 8, 1, 512, 9, 502, 84, 382, 126, 130, 36, 10, 1, 1024, 10, 1013, 120, 848, 252, 386, 120, 56, 10, 1, 2048, 11, 2036, 165, 1816, 462, 1024, 330, 232, 55, 12, 1
Offset: 0

Views

Author

Gary W. Adamson, May 15 2010

Keywords

Comments

Row sums = A045891 starting with offset 1: (1, 3, 7, 16, 36,...).

Examples

			First few rows of the triangle =
1;
2, 1;
4, 2, 1;
8, 3, 4, 1;
16, 4, 11, 4, 1;
32, 5, 26, 10, 6, 1;
64, 6, 57, 20, 22, 6, 1;
128, 7, 120, 35, 64, 21, 8, 1;
256, 8, 247, 56, 163, 56, 37, 8, 1;
512, 9, 502, 84, 382, 126, 130, 36, 10, 1;
1024, 10, 1013, 120, 848, 252, 386, 120, 56, 10, 1;
...
		

Crossrefs

Formula

Triangle read by rows, A007318 * A070909.

Extensions

a(27) = 1 inserted and more terms from Georg Fischer, May 29 2023

A178650 Triangle read by rows A051731 * A070909.

Original entry on oeis.org

1, 2, 1, 2, 0, 1, 3, 1, 1, 1, 2, 0, 1, 0, 1, 4, 1, 2, 0, 1, 1, 2, 0, 1, 0, 1, 0, 1, 4, 1, 2, 1, 1, 0, 1, 1, 3, 0, 2, 0, 1, 0, 1, 0, 1, 4, 1, 2, 0, 2, 0, 1, 0, 1, 1, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 6, 1, 4, 1, 2, 1, 1, 0, 1, 0, 1, 1
Offset: 1

Views

Author

Gary W. Adamson, May 31 2010

Keywords

Comments

Row sums = A069734: (1, 3, 3, 6, 4, 9, 5, 11,...)
Left border = d(n), A000005

Examples

			First few rows of the triangle =
1;
2, 1;
2, 0, 1;
3, 1, 1, 1;
2, 0, 1, 0, 1;
4, 1, 2, 0, 1, 1;
2, 0, 1, 0, 1, 0, 1;
4, 1, 2, 1, 1, 0, 1, 1;
3, 0, 2, 0, 1, 0, 1, 0, 1;
4, 1, 2, 0, 2, 0, 1, 0, 1, 1;
2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1;
6, 1, 4, 1, 2, 1, 1, 0, 1, 0, 1, 1;
2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1;
4, 1, 2, 0, 2, 0, 2, 0, 1, 0, 1, 0, 1, 1;
4, 0, 3, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1
5, 1, 3, 1, 2, 0, 2, 1, 1, 0, 1, 0, 1, 0, 1, 1;
2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1;
...
		

Crossrefs

Formula

As infinite lower triangular matrices, A051731 * A070909; where A051731 = the inverse Mobius transform.

A038754 a(2n) = 3^n, a(2n+1) = 2*3^n.

Original entry on oeis.org

1, 2, 3, 6, 9, 18, 27, 54, 81, 162, 243, 486, 729, 1458, 2187, 4374, 6561, 13122, 19683, 39366, 59049, 118098, 177147, 354294, 531441, 1062882, 1594323, 3188646, 4782969, 9565938, 14348907, 28697814, 43046721, 86093442, 129140163, 258280326, 387420489
Offset: 0

Views

Author

Henry Bottomley, May 03 2000

Keywords

Comments

In general, for the recurrence a(n) = a(n-1)*a(n-2)/a(n-3), all terms are integers iff a(0) divides a(2) and first three terms are positive integers, since a(2n+k) = a(k)*(a(2)/a(0))^n for all nonnegative integers n and k.
Equals eigensequence of triangle A070909; (1, 1, 2, 3, 6, 9, 18, ...) shifts to the left with multiplication by triangle A070909. - Gary W. Adamson, May 15 2010
The a(n) represent all paths of length (n+1), n >= 0, starting at the initial node on the path graph P_5, see the second Maple program. - Johannes W. Meijer, May 29 2010
a(n) is the difference between numbers of multiple of 3 evil (A001969) and odious (A000069) numbers in interval [0, 2^(n+1)). - Vladimir Shevelev, May 16 2012
A "half-geometric progression": to obtain a term (beginning with the third one) we multiply the before previous one by 3. - Vladimir Shevelev, May 21 2012
Pisano periods: 1, 2, 1, 4, 8, 2, 12, 4, 1, 8, 10, 4, 6, 12, 8, 8, 32, 2, 36, 8, ... . - R. J. Mathar, Aug 10 2012
Numbers k such that the k-th cyclotomic polynomial has a root mod 3. - Eric M. Schmidt, Jul 31 2013
Range of row n of the circular Pascal array of order 6. - Shaun V. Ault, Jun 05 2014
Also, the number of walks of length n on the graph 0--1--2--3--4 starting at vertex 1. - Sean A. Irvine, Jun 03 2025

Examples

			In the interval [0,2^5) we have 11 multiples of 3 numbers, from which 10 are evil and only one (21) is odious. Thus a(4) = 10 - 1 = 9. - _Vladimir Shevelev_, May 16 2012
		

Crossrefs

Programs

  • Haskell
    import Data.List (transpose)
    a038754 n = a038754_list !! n
    a038754_list = concat $ transpose [a000244_list, a008776_list]
    -- Reinhard Zumkeller, Oct 19 2015
    
  • Magma
    [n le 2 select n else 3*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Aug 18 2016
    
  • Maple
    a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=3*a[n-2]+2 od: seq(a[n]+1, n=0..34); # Zerinvary Lajos, Mar 20 2008
    with(GraphTheory): P:=5: G:=PathGraph(P): A:= AdjacencyMatrix(G): nmax:=35; for n from 1 to nmax do B(n):=A^n; a(n):=add(B(n)[1,k],k=1..P) od: seq(a(n),n=1..nmax); # Johannes W. Meijer, May 29 2010
  • Mathematica
    LinearRecurrence[{0,3},{1,2},40] (* Harvey P. Dale, Jan 26 2014 *)
    CoefficientList[Series[(1+2x)/(1-3x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 18 2016 *)
    Module[{nn=20,c},c=3^Range[0,nn];Riffle[c,2c]] (* Harvey P. Dale, Aug 21 2021 *)
  • PARI
    a(n)=(1/6)*(5-(-1)^n)*3^floor(n/2)
    
  • PARI
    a(n)=3^(n>>1)<
    				
  • SageMath
    [2^(n%2)*3^((n-(n%2))/2) for n in range(61)] # G. C. Greubel, Oct 10 2022

Formula

a(n) = a(n-1)*a(n-2)/a(n-3) with a(0)=1, a(1)=2, a(2)=3.
a(2*n) = (3/2)*a(2*n-1) = 3^n, a(2*n+1) = 2*a(2*n) = 2*3^n.
From Benoit Cloitre, Apr 27 2003: (Start)
a(1)=1, a(n)= 2*a(n-1) if a(n-1) is odd, or a(n)= (3/2)*a(n-1) if a(n-1) is even.
a(n) = (1/6)*(5-(-1)^n)*3^floor(n/2).
a(2*n) = a(2*n-1) + a(2*n-2) + a(2*n-3).
a(2*n+1) = a(2*n) + a(2*n-1). (End)
G.f.: (1+2*x)/(1-3*x^2). - Paul Barry, Aug 25 2003
From Reinhard Zumkeller, Sep 11 2003: (Start)
a(n) = (1 + n mod 2) * 3^floor(n/2).
a(n) = A087503(n) - A087503(n-1). (End)
a(n) = sqrt(3)*(2+sqrt(3))*(sqrt(3))^n/6 - sqrt(3)*(2-sqrt(3))*(-sqrt(3))^n/6. - Paul Barry, Sep 16 2003
From Reinhard Zumkeller, May 26 2008: (Start)
a(n) = A140740(n+2,2).
a(n+1) = a(n) + a(n - n mod 2). (End)
If p(i) = Fibonacci(i-3) and if A is the Hessenberg matrix of order n defined by A(i,j) = p(j-i+1), (i<=j), A(i,j)=-1, (i=j+1), and A(i,j)=0 otherwise. Then, for n>=1, a(n-1) = (-1)^n det A. - Milan Janjic, May 08 2010
a(n) = A182751(n) for n >= 2. - Jaroslav Krizek, Nov 27 2010
a(n) = Sum_{i=0..2^(n+1), i==0 (mod 3)} (-1)^A000120(i). - Vladimir Shevelev, May 16 2012
a(0)=1, a(1)=2, for n>=3, a(n)=3*a(n-2). - Vladimir Shevelev, May 21 2012
Sum_(n>=0) 1/a(n) = 9/4. - Alexander R. Povolotsky, Aug 24 2012
a(n) = sqrt(3*a(n-1)^2 + (-3)^(n-1)). - Richard R. Forberg, Sep 04 2013
a(n) = 2^((1-(-1)^n)/2)*3^((2*n-1+(-1)^n)/4). - Luce ETIENNE, Aug 11 2014
From Reinhard Zumkeller, Oct 19 2015: (Start)
a(2*n) = A000244(n), a(2*n+1) = A008776(n).
For n > 0: a(n+1) = a(n) + if a(n) odd then min{a(n), a(n-1)} else max{a(n), a(n-1)}, see also A128588. (End)
E.g.f.: (7*cosh(sqrt(3)*x) + 4*sqrt(3)*sinh(sqrt(3)*x) - 4)/3. - Stefano Spezia, Feb 17 2022
Sum_{n>=0} (-1)^n/a(n) = 3/4. - Amiram Eldar, Dec 02 2022

A169623 Generalized Pascal triangle read by rows: T(n,0) = T(0,n) = 1 for n >= 0, T(n,k) = 0 for k < 0 or k > n; otherwise T(n,k) = T(n-2,k-2) + T(n-2,k-1) + T(n-2,k) for 1 <= k <= n-1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 3, 2, 1, 1, 3, 5, 5, 3, 1, 1, 3, 6, 7, 6, 3, 1, 1, 4, 9, 13, 13, 9, 4, 1, 1, 4, 10, 16, 19, 16, 10, 4, 1, 1, 5, 14, 26, 35, 35, 26, 14, 5, 1, 1, 5, 15, 30, 45, 51, 45, 30, 15, 5, 1, 1, 6, 20, 45, 75, 96, 96, 75, 45, 20, 6, 1
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Dec 03 2009

Keywords

Comments

The borders are all 1's, with zero entries outside. To get an internal entry, use the rule that D = A+B+C here:
A B C
* * * *
* * D * *
That is, add the three terms directly above you, two rows back.
This is the triangle er(n,k) defined in the Ehrenborg and Readdy link. See Proposition 2.4 and Table 1. - Michel Marcus, Sep 14 2016
If the offset is changed from 0 to 1, this is also the table U(n,k) of the coefficients [x^k] p_n(x) of the polynomials p_n(x) = (x + 1)*p_{n-1}(x) (if n even), p_n = (x^2 + x + 1)^floor(n/2) if n odd.
May be split into two triangles by taking the even-numbered and odd-numbered rows separately: the even-numbered rows give A027907.
From Peter Bala, Aug 19 2021: (Start)
Let M denote the lower unit triangular array A070909. For k = 0,1,2,..., define M(k) to be the lower unit triangular block array
/I_k 0\
\ 0 M/
having the k x k identity matrix I_k as the upper left block; in particular, M(0) = M. Then the present triangle equals the infinite matrix product M(0)*M(1)*M(2)*... (which is clearly well-defined). See the Example section below. The proof uses the hockey-stick identities from the Formula section. (End)

Examples

			Triangle begins:
                    1
                  1   1
                1   1   1
              1   2   2   1
            1   2   3   2   1
          1   3   5   5   3   1
        1   3   6   7   6   3   1
      1   4   9  13  13   9   4   1
    1   4  10  16  19  16  10   4   1
  ...
As a square array read by antidiagonals:
  1, 1, 1,  1,  1,  1,  1,  1,  1,  1,  1,  1, 1, 1, 1, 1, ...
  1, 1, 2,  2,  3,  3,  4,  4,  5,  5,  6,  6, 7, 7, 8, 8, ...
  1, 2, 3,  5,  6,  9, 10, 14, 15, 20, 21, 27, ...
  1, 2, 5,  7, 13, 16, 26, 30, 45, ...
  1, 3, 6, 13, 19, 35, 45, 75, ...
  1, 3, 9, 16, 35, 51, 96, ...
  ...
From _Peter Bala_, Aug 19 2021: (Start)
With the arrays M(k) as defined in the Comments section, the infinite product M(0)*M(1)*M(2)*... begins
  /1        \/1        \/1       \ /1       \        /1         \
  |1 1      ||0 1      ||0 1      ||0 1      |       |1 1       |
  |1 0 1    ||0 1 1    ||0 0 1    ||0 0 1    |...  = |1 1 1     |
  |1 0 1 1  ||0 1 0 1  ||0 0 1 1  ||0 0 0 1  |       |1 2 2 1   |
  |1 0 1 0 1||0 1 0 1 1||0 0 1 0 1||0 0 0 1 1|       |1 2 3 2 1 |
  |...      ||...       |...      ||...      |       |...       |
(End)
		

Crossrefs

A123149 is essentially the same triangle, except for a diagonal of zeros.
Row sums are in A182522 (essentially A038754).
See A295555 for the next triangle in the series A007318, A169623 (this sequence).

Programs

  • Maple
    T:=proc(n,k) option remember;
    if n >= 0 and k = 0 then 1
    elif n >= 0 and k = n then 1
    elif (k < 0 or k > n) then 0
    else T(n-2,k-2)+T(n-2,k-1)+T(n-2,k);
    fi;
    end;
    for n from 0 to 14 do lprint([seq(T(n,k),k=0..n)]); od: # N. J. A. Sloane, Nov 23 2017
  • Mathematica
    p[x, 1] := 1;
    p[x_, n_] := p[x, n] = If[Mod[n, 2] == 0, (x + 1)*p[x, n - 1], (x^2 + x + 1)^Floor[n/2]]
    a = Table[CoefficientList[p[x, n], x], {n, 1, 12}]
    Flatten[a] (* This is for the same sequence but with offset 1 *)

Formula

From Peter Bala, Aug 19 2021: (Start)
T(2*n,k) = T(2*n-1,k-1) + T(2*n-2,k).
T(2*n,k) = T(2*n-1,k) + T(2*n-2,k-2).
T(2*n+1,k) = T(2*n,k) + T(2*n,k-1).
Hockey stick identities (relate row k entries to entries in row k-1):
T(2*n,k) = T(2*n-1,k-1) + T(2*n-3,k-1) + T(2*n-5,k-1) + ....
T(2*n+1,k) = T(2*n,k-1) + ( T(2*n-1,k-1) + T(2*n-3,k-1) + T(2*n-5,k-1) + ... ). (End)

Extensions

Keyword:tabl added, notation standardized, formula added by the Assoc. Editors of the OEIS, Feb 02 2010
Entry revised by N. J. A. Sloane, Nov 23 2017
Showing 1-10 of 15 results. Next