cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A084221 a(n+2) = 4*a(n), with a(0)=1, a(1)=3.

Original entry on oeis.org

1, 3, 4, 12, 16, 48, 64, 192, 256, 768, 1024, 3072, 4096, 12288, 16384, 49152, 65536, 196608, 262144, 786432, 1048576, 3145728, 4194304, 12582912, 16777216, 50331648, 67108864, 201326592, 268435456, 805306368, 1073741824, 3221225472, 4294967296, 12884901888
Offset: 0

Views

Author

Paul Barry, May 21 2003

Keywords

Comments

Binomial transform is A060925. Binomial transform of A084222.
Sequences with similar recurrence rules: A016116 (multiplier 2), A038754 (multiplier 3), A133632 (multiplier 5). See A133632 for general formulas. - Hieronymus Fischer, Sep 19 2007
Equals A133080 * A000079. A122756 is a companion sequence. - Gary W. Adamson, Sep 19 2007

Examples

			Binary...............Decimal
1..........................1
11.........................3
100........................4
1100......................12
10000.....................16
110000....................48
1000000...................64
11000000.................192
100000000................256
1100000000...............768
10000000000.............1024
110000000000............3072, etc. - _Philippe Deléham_, Mar 21 2014
		

Crossrefs

For partial sums see A133628. Partial sums for other multipliers p: A027383(p=2), A087503(p=3), A133629(p=5).
Other related sequences: A132666, A132667, A132668, A132669.

Programs

Formula

a(n) = (5*2^n-(-2)^n)/4.
G.f.: (1+3*x)/((1-2*x)(1+2*x)).
E.g.f.: (5*exp(2*x) - exp(-2*x))/4.
a(n) = A133628(n) - A133628(n-1) for n>1. - Hieronymus Fischer, Sep 19 2007
Equals A133080 * [1, 2, 4, 8, ...]. Row sums of triangle A133087. - Gary W. Adamson, Sep 08 2007
a(n+1)-2a(n) = A000079 signed. a(n)+a(n+2)=5*a(n). First differences give A135520. - Paul Curtz, Apr 22 2008
a(n) = A074323(n+1)*A016116(n). - R. J. Mathar, Jul 08 2009
a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011
a(n) = Sum_{k=0..n+1} A181650(n+1,k)*2^k. - Philippe Deléham, Nov 19 2011
a(2*n) = A000302(n); a(2*n+1) = A164346(n). - Philippe Deléham, Mar 21 2014

Extensions

Edited by N. J. A. Sloane, Dec 14 2007

A070909 Triangle read by rows giving successive states of cellular automaton generated by "Rule 28" and by "Rule 156".

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0
Offset: 0

Views

Author

Hans Havermann, May 26 2002

Keywords

Comments

Row n has length n+1.
From Gary W. Adamson, May 15 2010: (Start)
Eigensequence of the triangle = A038754 (i.e., 1, 1, 2, 3, 6, 9, 18, ...) shifts to the left with multiplication by triangle A070909.
Binomial transform of A070909 = triangle A177953. (End)
From Paul Barry, Nov 03 2010: (Start)
Generalized (conditional) Riordan array with k-th column generated by x^k/(1-x) if k is even, x^k otherwise.
A181651 is an eigentriangle. Inverse is A181650. (End)
From Peter Bala, Aug 15 2021: (Start)
Double Riordan array (1/(1 - x); x*(1 - x), x/(1 - x)) as defined in Davenport et al. The inverse array is the double Riordan array (1 - x - x^2; x/(1 - x - x^2), x*(1 - x - x^2)).
In general, double Riordan arrays of the form (g(x); x/g(x), x*g(x)), where g(x) = 1 + g_1*x + g_2*x^2 + ..., form a group under matrix multiplication with the group law given by (g(x); x/g(x), x*g(x)) * (G(x); x/G(x), x*G(x)) = (h(x); x/h(x), x*h(x)), where h(x) = G(x) + (g(x) - 1)*(G(x) + G(-x))/2. The inverse array of (g(x); x/g(x), x*g(x)) equals (f(x); x/f(x), x*f(x)), where f(x) = (2 - (g(x) - g(-x)))/(g(x) + g(-x)). (End)

Examples

			From _Paul Barry_, Nov 03 2010: (Start)
Triangle begins
  1;
  1, 1;
  1, 0, 1;
  1, 0, 1, 1;
  1, 0, 1, 0, 1;
  1, 0, 1, 0, 1, 1;
  1, 0, 1, 0, 1, 0, 1;
  1, 0, 1, 0, 1, 0, 1, 1;
  1, 0, 1, 0, 1, 0, 1, 0, 1;
  1, 0, 1, 0, 1, 0, 1, 0, 1, 1;
Production matrix begins
  1,  1;
  0, -1,  1;
  0, -1,  1,  1;
  0,  0,  0, -1,  1;
  0,  0,  0, -1,  1,  1;
  0,  0,  0,  0,  0, -1,  1;
  0,  0,  0,  0,  0, -1,  1,  1;
  0,  0,  0,  0,  0,  0,  0, -1,  1;
  0,  0,  0,  0,  0,  0,  0, -1,  1,  1;
  0,  0,  0,  0,  0,  0,  0,  0,  0, -1,  1; (End)
		

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; Chapter 3.

Crossrefs

Inverse array A181650. Cf. A038754, A266502, A266508.

Programs

  • Mathematica
    rows = 14; ca = CellularAutomaton[28, {{1}, 0}, rows-1]; Flatten[Table[ca[[k, 1 ;; k]], {k, 1, rows}]] (* Jean-François Alcover, May 24 2012 *)
Showing 1-2 of 2 results.