A070910 Decimal expansion of BesselI(0,2).
2, 2, 7, 9, 5, 8, 5, 3, 0, 2, 3, 3, 6, 0, 6, 7, 2, 6, 7, 4, 3, 7, 2, 0, 4, 4, 4, 0, 8, 1, 1, 5, 3, 3, 3, 5, 3, 2, 8, 5, 8, 4, 1, 1, 0, 2, 7, 8, 5, 4, 5, 9, 0, 5, 4, 0, 7, 0, 8, 3, 9, 7, 5, 1, 6, 6, 4, 3, 0, 5, 3, 4, 3, 2, 3, 2, 6, 7, 6, 3, 4, 2, 7, 2, 9, 5, 1, 7, 0, 8, 8, 5, 5, 6, 4, 8, 5, 8, 9, 8, 9, 8, 4, 5, 9
Offset: 1
Examples
2.2795853023360672674372044408115333532858411...
References
- Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 2, equation 2:5:5 at page 20.
Links
- Michael Penn, An exponential trigonometric integral., YouTube video, 2020.
- Eric Weisstein's World of Mathematics, Factorial Sums.
- Eric Weisstein's World of Mathematics, Modified Bessel Function of the First Kind.
Crossrefs
Programs
-
Mathematica
RealDigits[ BesselI[0, 2], 10, 110] [[1]] (* Robert G. Wilson v, Jul 09 2004 *) (* Or *) RealDigits[ Sum[ 1/(n!n!), {n, 0, Infinity}], 10, 110][[1]]
-
PARI
besseli(0,2) \\ Charles R Greathouse IV, Feb 19 2014
Formula
Equals Sum_{k>=0} 1/k!^2.
From Peter Bala, Aug 19 2013: (Start)
Continued fraction expansion: 1/(1 - 1/(2 - 1/(5 - 4/(10 - 9/(17 - ... - (n-1)^2/(n^2+1 - ...)))))). See A006040. Cf. A096789.
This continued fraction is the particular case k = 0 of the result BesselI(k,2) = Sum_{n = 0..oo} 1/(n!*(n+k)!) = 1/(k! - k!/((k+2) - (k+1)/((2*k+5) - 2*(k+2)/((3*k+10) - ... - n*(n+k)/(((n+1)*(n+k+1)+1) - ...))))). See the remarks in A099597 for a sketch of the proof. (End)
From Amiram Eldar, May 29 2021: (Start)
Equals (1/e^2) * Sum_{k>=0} binomial(2*k,k)/k! = e^2 * Sum_{k>=0} (-1)^k*binomial(2*k,k)/k!.
Equal (1/(2*Pi)) * Integral_{x=0..2*Pi} exp(2*sin(x)) dx. (End)
Equals BesselJ(0,2*i). - Jianing Song, Sep 18 2021