A070918 Triangle of T(n,k) coefficients of polynomials with first n prime numbers as roots.
1, -2, 1, 6, -5, 1, -30, 31, -10, 1, 210, -247, 101, -17, 1, -2310, 2927, -1358, 288, -28, 1, 30030, -40361, 20581, -5102, 652, -41, 1, -510510, 716167, -390238, 107315, -16186, 1349, -58, 1, 9699690, -14117683, 8130689, -2429223, 414849, -41817, 2451, -77, 1
Offset: 0
Examples
Row 4 of this sequence is 210, -247, 101, -17, 1 because (x-prime(1))(x-prime(2))(x-prime(3))(x-prime(4)) = (x-2)(x-3)(x-5)(x-7) = x^4 - 17*x^3 + 101*x^2 - 247*x + 210. Triangle begins: 1; -2, 1; 6, -5, 1; -30, 31, -10, 1; 210, -247, 101, -17, 1; -2310, 2927, -1358, 288, -28, 1; 30030, -40361, 20581, -5102, 652, -41, 1; -510510, 716167, -390238, 107315, -16186, 1349, -58, 1; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Programs
-
Maple
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(mul(x-ithprime(i), i=1..n)): seq(T(n), n=0..10); # Alois P. Heinz, Aug 18 2019
-
Mathematica
Table[CoefficientList[Expand[Times@@(x-Prime[Range[n]])],x],{n,0,10}]// Flatten (* Harvey P. Dale, Feb 12 2020 *)
-
PARI
p=1; for(k=1,10,p=p*(x-prime(k)); for(n=0,k,print1(polcoeff(p,n),",")))
Formula
From Alois P. Heinz, Aug 18 2019: (Start)
T(n,k) = [x^k] Product_{i=1..n} (x-prime(i)).
Sum_{k=0..n} |T(n,k)| = A054640(n).
|Sum_{k=0..n} T(n,k)| = A005867(n).
|Sum_{k=0..n} k * T(n,k)| = A078456(n). (End)
Extensions
First term T(0,0)=1 prepended by Alois P. Heinz, Aug 18 2019
Comments