A070947 Number of permutations on n letters that have only cycles of length 6 or less.
1, 1, 2, 6, 24, 120, 720, 4320, 29520, 225360, 1890720, 17169120, 166112640, 1680462720, 18189031680, 209008512000, 2532028896000, 32143053484800, 425585741760000, 5865854258188800, 84489178710067200, 1266667808011315200, 19700712491727974400
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..514
- P. L. Krapivsky, J. M. Luck, Coverage fluctuations in theater models, arXiv:1902.04365 [cond-mat.stat-mech], 2019.
- R. Petuchovas, Asymptotic analysis of the cyclic structure of permutations, arXiv:1611.02934 [math.CO], p. 6, 2016.
Crossrefs
Cf. A057693.
Programs
-
Maple
with(combstruct):a:=proc(m) [ZL, {ZL=Set(Cycle(Z, m>=card))}, labeled]; end: A:=a(6):seq(count(A, size=n), n=0..21); # Zerinvary Lajos, Jun 11 2008 # second Maple program: a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j) *binomial(n-1, j-1)*(j-1)!, j=1..min(n, 6))) end: seq(a(n), n=0..25); # Alois P. Heinz, Dec 28 2017
-
Mathematica
terms = 22; CoefficientList[Exp[-Log[1-x] + O[x]^7 // Normal] + O[x]^terms, x]*Range[0, terms-1]! (* Jean-François Alcover, Dec 28 2017 *)
-
Python
from sympy.core.cache import cacheit from sympy import binomial, factorial as f @cacheit def a(n): return 1 if n==0 else sum(a(n-j)*binomial(n - 1, j - 1)*f(j - 1) for j in range(1, min(n, 6)+1)) print([a(n) for n in range(31)]) # Indranil Ghosh, Dec 29 2017, after Alois P. Heinz
Formula
E.g.f.: exp(x+1/2*x^2+1/3*x^3+1/4*x^4+1/5*x^5+1/6*x^6).