A126074 Triangle read by rows: T(n,k) is the number of permutations of n elements that have the longest cycle length k.
1, 1, 1, 1, 3, 2, 1, 9, 8, 6, 1, 25, 40, 30, 24, 1, 75, 200, 180, 144, 120, 1, 231, 980, 1260, 1008, 840, 720, 1, 763, 5152, 8820, 8064, 6720, 5760, 5040, 1, 2619, 28448, 61236, 72576, 60480, 51840, 45360, 40320, 1, 9495, 162080, 461160, 653184, 604800, 518400, 453600, 403200, 362880
Offset: 1
Examples
Triangle T(n,k) begins: 1; 1, 1; 1, 3, 2; 1, 9, 8, 6; 1, 25, 40, 30, 24; 1, 75, 200, 180, 144, 120; 1, 231, 980, 1260, 1008, 840, 720; 1, 763, 5152, 8820, 8064, 6720, 5760, 5040; ...
Links
- Alois P. Heinz, Rows n = 1..141, flattened
- Steven Finch, Permute, Graph, Map, Derange, arXiv:2111.05720 [math.CO], 2021.
- S. W. Golomb and P. Gaal, On the number of permutations of n objects with greatest cycle length k, Adv. in Appl. Math., 20(1), 1998, 98-107.
- IBM Research, Ponder This, December 2006.
- Peter Luschny, Counting with Partitions. [From _Peter Luschny_, Mar 07 2009]
- Peter Luschny, Generalized Stirling_1 Triangles. [From _Peter Luschny_, Mar 07 2009]
- D. Panario and B. Richmond, Exact largest and smallest size of components, Algorithmica, 31 (2001), 413-432.
Crossrefs
Programs
-
Maple
A:= proc(n,k) option remember; `if`(n<0, 0, `if`(n=0, 1, add(mul(n-i, i=1..j-1)*A(n-j,k), j=1..k))) end: T:= (n, k)-> A(n, k) -A(n, k-1): seq(seq(T(n,k), k=1..n), n=1..10); # Alois P. Heinz, Feb 11 2013
-
Mathematica
Table[CoefficientList[ Series[(Exp[x^m/m] - 1) Exp[Sum[x^k/k, {k, 1, m - 1}]], {x, 0, 8}], x]*Table[n!, {n, 0, 8}], {m, 1, 8}] // Transpose // Grid (* Geoffrey Critzer, May 23 2009 *)
-
Sage
def A126074(n, k): f = factorial(n) P = Partitions(n, max_part=k, inner=[k]) return sum(f // p.aut() for p in P) for n in (1..9): print([A126074(n,k) for k in (1..n)]) # Peter Luschny, Apr 17 2016
Formula
T(n,1) = 1.
T(n,2) = n! * Sum_{k=1..[n/2]} 1/(k! * (2!)^k * (n-2*k)!).
T(n,k) = n!/k * (1-1/(n-k)-...-1/(k+1)-1/2k), if n/3 < k <= n/2.
T(n,k) = n!/k, if n/2 < k <= n.
T(n,n) = (n-1)! = A000142(n-1).
E.g.f. for k-th column: exp(-x^k*LerchPhi(x,1,k))*(exp(x^k/k)-1)/(1-x). - Vladeta Jovovic, Mar 03 2007
From Peter Luschny, Mar 07 2009: (Start)
T(n,0) = [n = 0] (Iverson notation) and for n > 0 and 1 <= m <= n
T(n,m) = Sum_{a} M(a)|f^a| where a = a_1,..,a_n such that
1*a_1+2*a_2+...+n*a_n = n and max{a_i} = m, M(a) = n!/(a_1!*..*a_n!),
f^a = (f_1/1!)^a_1*..*(f_n/n!)^a_n and f_n = product_{j=0..n-2}(j-n+1). (End)
Sum_{k=1..n} k * T(n,k) = A028418(n). - Alois P. Heinz, May 17 2016
Comments