A126074
Triangle read by rows: T(n,k) is the number of permutations of n elements that have the longest cycle length k.
Original entry on oeis.org
1, 1, 1, 1, 3, 2, 1, 9, 8, 6, 1, 25, 40, 30, 24, 1, 75, 200, 180, 144, 120, 1, 231, 980, 1260, 1008, 840, 720, 1, 763, 5152, 8820, 8064, 6720, 5760, 5040, 1, 2619, 28448, 61236, 72576, 60480, 51840, 45360, 40320, 1, 9495, 162080, 461160, 653184, 604800, 518400, 453600, 403200, 362880
Offset: 1
Triangle T(n,k) begins:
1;
1, 1;
1, 3, 2;
1, 9, 8, 6;
1, 25, 40, 30, 24;
1, 75, 200, 180, 144, 120;
1, 231, 980, 1260, 1008, 840, 720;
1, 763, 5152, 8820, 8064, 6720, 5760, 5040;
...
- Alois P. Heinz, Rows n = 1..141, flattened
- Steven Finch, Permute, Graph, Map, Derange, arXiv:2111.05720 [math.CO], 2021.
- S. W. Golomb and P. Gaal, On the number of permutations of n objects with greatest cycle length k, Adv. in Appl. Math., 20(1), 1998, 98-107.
- IBM Research, Ponder This, December 2006.
- Peter Luschny, Counting with Partitions. [From _Peter Luschny_, Mar 07 2009]
- Peter Luschny, Generalized Stirling_1 Triangles. [From _Peter Luschny_, Mar 07 2009]
- D. Panario and B. Richmond, Exact largest and smallest size of components, Algorithmica, 31 (2001), 413-432.
Cf.
A157386,
A157385,
A157384,
A157383,
A157400,
A157391,
A157392,
A157393,
A157394,
A157395. -
Peter Luschny, Mar 07 2009
-
A:= proc(n,k) option remember; `if`(n<0, 0, `if`(n=0, 1,
add(mul(n-i, i=1..j-1)*A(n-j,k), j=1..k)))
end:
T:= (n, k)-> A(n, k) -A(n, k-1):
seq(seq(T(n,k), k=1..n), n=1..10); # Alois P. Heinz, Feb 11 2013
-
Table[CoefficientList[ Series[(Exp[x^m/m] - 1) Exp[Sum[x^k/k, {k, 1, m - 1}]], {x, 0, 8}], x]*Table[n!, {n, 0, 8}], {m, 1, 8}] // Transpose // Grid (* Geoffrey Critzer, May 23 2009 *)
-
def A126074(n, k):
f = factorial(n)
P = Partitions(n, max_part=k, inner=[k])
return sum(f // p.aut() for p in P)
for n in (1..9): print([A126074(n,k) for k in (1..n)]) # Peter Luschny, Apr 17 2016
A070945
Number of permutations on n letters that have only cycles of length 4 or less.
Original entry on oeis.org
1, 1, 2, 6, 24, 96, 456, 2472, 14736, 92304, 632736, 4661856, 36364032, 297668736, 2583425664, 23550535296, 224086162176, 2221083839232, 22976670905856, 246829966447104, 2745834333566976, 31605782067081216, 376290722808502272
Offset: 0
- Dennis P. Walsh, The Number of Permutations with Only Small Cycles, preprint [From Geoffrey Critzer, May 24 2009]
- Michael De Vlieger, Table of n, a(n) for n = 0..499
- P. L. Krapivsky, J. M. Luck, Coverage fluctuations in theater models, arXiv:1902.04365 [cond-mat.stat-mech], 2019.
- I. Mezo, Periodicity of the last digits of some combinatorial sequences, arXiv preprint arXiv:1308.1637 [math.CO], 2013 and J. Int. Seq. 17 (2014) #14.1.1 .
- R. Petuchovas, Asymptotic analysis of the cyclic structure of permutations, arXiv:1611.02934 [math.CO], p. 6, 2016.
-
with (combstruct):a:=proc(m) [ZL, {ZL=Set(Cycle(Z, m>=card))}, labeled]; end: A:=a(4):seq(count(A, size=n), n=0..22); # Zerinvary Lajos, Jun 11 2008
G := exp(x+(1/2)*x^2+(1/3)*x^3+(1/4)*x^4): seq(factorial(n)*coeftayl(G, x = 0, n), n = 0 .. 22); # Emeric Deutsch, Jun 21 2009
-
Table[Sum[Binomial[n, 4 i]*(4 i)!/(i!*4^i)* Sum[Binomial[n - 4 i, 3 j]*(3 j)!/(j!*3^j)* Sum[Binomial[n - 4 i - 3 j, 2 k]*(2 k)!/(k!*2^k), {k, 0, n}], {j, 0, n}], {i, 0, n}], {n, 0, 22}] (* Geoffrey Critzer, May 24 2009 *)
With[{nn = 23, k = 5}, CoefficientList[Exp[-Log[1 - x] + O[x]^k // Normal] + O[x]^nn, x] Range[0, nn - 1]!] (* Michael De Vlieger, Mar 29 2019, after Jean-François Alcover at A070947 *)
A070947
Number of permutations on n letters that have only cycles of length 6 or less.
Original entry on oeis.org
1, 1, 2, 6, 24, 120, 720, 4320, 29520, 225360, 1890720, 17169120, 166112640, 1680462720, 18189031680, 209008512000, 2532028896000, 32143053484800, 425585741760000, 5865854258188800, 84489178710067200, 1266667808011315200, 19700712491727974400
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..514
- P. L. Krapivsky, J. M. Luck, Coverage fluctuations in theater models, arXiv:1902.04365 [cond-mat.stat-mech], 2019.
- R. Petuchovas, Asymptotic analysis of the cyclic structure of permutations, arXiv:1611.02934 [math.CO], p. 6, 2016.
-
with(combstruct):a:=proc(m) [ZL, {ZL=Set(Cycle(Z, m>=card))}, labeled]; end: A:=a(6):seq(count(A, size=n), n=0..21); # Zerinvary Lajos, Jun 11 2008
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)
*binomial(n-1, j-1)*(j-1)!, j=1..min(n, 6)))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Dec 28 2017
-
terms = 22; CoefficientList[Exp[-Log[1-x] + O[x]^7 // Normal] + O[x]^terms, x]*Range[0, terms-1]! (* Jean-François Alcover, Dec 28 2017 *)
-
from sympy.core.cache import cacheit
from sympy import binomial, factorial as f
@cacheit
def a(n): return 1 if n==0 else sum(a(n-j)*binomial(n - 1, j - 1)*f(j - 1) for j in range(1, min(n, 6)+1))
print([a(n) for n in range(31)]) # Indranil Ghosh, Dec 29 2017, after Alois P. Heinz
A070946
Number of permutations on n letters that have only cycles of length 5 or less.
Original entry on oeis.org
1, 1, 2, 6, 24, 120, 600, 3480, 22800, 164880, 1285920, 10516320, 92931840, 877374720, 8762014080, 91819440000, 1005716908800, 11584953158400, 139521689740800, 1748830512960000, 22750446292531200, 306931140411955200, 4296645083802470400, 62213458150660147200
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..532
- P. L. Krapivsky, J. M. Luck, Coverage fluctuations in theater models, arXiv:1902.04365 [cond-mat.stat-mech], 2019.
- Vladimir Kruchinin, Composition of ordinary generating functions, arXiv:1009.2565 [math.CO], 2010.
- R. Petuchovas, Asymptotic analysis of the cyclic structure of permutations, arXiv:1611.02934 [math.CO], p. 6, 2016.
-
with(combstruct):a:=proc(m) [ZL, {ZL=Set(Cycle(Z, m>=card))}, labeled]; end: A:=a(5):seq(count(A, size=n), n=0..21); # Zerinvary Lajos, Jun 11 2008
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)
*binomial(n-1, j-1)*(j-1)!, j=1..min(n, 5)))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Jan 25 2018
-
With[{nn=30},CoefficientList[Series[Exp[x+x^2/2+x^3/3+x^4/4+ x^5/5], {x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Mar 24 2016 *)
A334569
E.g.f.: exp(-(x + x^2/2 + x^3/3)).
Original entry on oeis.org
1, -1, 0, 0, 6, -6, -24, -120, 540, 1764, 2016, -68256, -147960, 700920, 11870496, 5245344, -330495984, -2602348560, 6794046720, 141179998464, 619736321376, -6025074044256, -66284988059520, -87481563442560, 4660723755205056, 34028147176271424, -98057302990861824
Offset: 0
-
m = 25; Range[0, m]! * CoefficientList[Series[Exp[-(x + x^2/2 + x^3/3)], {x, 0, m}], x] (* Amiram Eldar, May 03 2021 *)
-
N=40; x='x+O('x^N); Vec(serlaplace(exp(-x-x^2/2-x^3/3)))
A071007
Number of permutations in the symmetric group S_n such that the maximal cycle has length exactly 3.
Original entry on oeis.org
0, 0, 0, 2, 8, 40, 200, 980, 5152, 28448, 162080, 979000, 6179360, 40575392, 279199648, 1997406320, 14825619200, 114365751040, 912510870272, 7521873125408, 64045101880960, 561615674345600, 5067769601121920, 47023128008540992, 447820056115824128
Offset: 0
Sharon Sela (sharonsela(AT)hotmail.com), May 19 2002
-
nn=20;Range[0,nn]!CoefficientList[Series[Exp[x+x^2/2+x^3/3]-Exp[x+x^2/2],{x,0,nn}],x] (* Geoffrey Critzer, Jan 23 2013 *)
-
for(n=0,25,print1(polcoeff(serlaplace(exp(x+x^2/2+x^3/3)-exp(x+x^2/2)),n)","))
A202364
Number of n-permutations with at least one cycle of length >=4.
Original entry on oeis.org
0, 0, 0, 0, 6, 54, 444, 3828, 34404, 331812, 3457224, 38902104, 472682088, 6185876904, 86896701072, 1305666612144, 20907918062064, 355572850545648, 6401460197543904, 121637573726005152, 2432837939316094944, 51090380436082401504, 1123995659389121919168
Offset: 0
- R. Sedgewick and P. Flajolet, Analysis of Algorithms, Addison Wesley, 1996, page 358.
-
b:= proc(n) option remember; `if`(n<4, [6, 54, 444, 3828][n+1],
((5*n+3+n^2)*b(n-1) -(n+3)*b(n-2) -(n+3)*(n+2)*b(n-3)
-(n+3)*(n+2)*(n+1)^2*b(n-4))/n)
end:
a:= n-> `if`(n<4, 0, b(n-4)):
seq(a(n), n=0..30); # Alois P. Heinz, Jan 09 2013
-
nn=25;Range[0,nn]!CoefficientList[Series[1/(1-x)-Exp[x+x^2/2+x^3/3],{x,0,nn}],x]
(* Second program: *)
b[n_] := b[n] = If[n<4, {6, 54, 444, 3828}[[n+1]], ((5*n+3+n^2)*b[n-1] - (n + 3)*b[n-2] - (n+3)*(n+2)*b[n-3] - (n+3)*(n+2)*(n+1)^2*b[n-4])/n]; a[n_] := If[n<4, 0, b[n-4]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 08 2017, after Alois P. Heinz *)
A330858
Triangle read by rows: T(n,k) is the number of permutations in S_n for which all cycles have length <= k.
Original entry on oeis.org
1, 1, 2, 1, 4, 6, 1, 10, 18, 24, 1, 26, 66, 96, 120, 1, 76, 276, 456, 600, 720, 1, 232, 1212, 2472, 3480, 4320, 5040, 1, 764, 5916, 14736, 22800, 29520, 35280, 40320, 1, 2620, 31068, 92304, 164880, 225360, 277200, 322560, 362880, 1, 9496, 171576, 632736
Offset: 1
For n = 3 and k = 2, the T(3,2) = 4 permutations in S_3 where all cycle lengths are less than or equal to 2 are:
(1)(2)(3), (12)(3), (13)(2), and (1)(23).
Table begins:
n\k| 1 2 3 4 5 6 7 8 9
---+------------------------------------------------------
1| 1
2| 1 2
3| 1 4 6
4| 1 10 18 24
5| 1 26 66 96 120
6| 1 76 276 456 600 720
7| 1 232 1212 2472 3480 4320 5040
8| 1 764 5916 14736 22800 29520 35280 40320
9| 1 2620 31068 92304 164880 225360 277200 322560 362880
-
T[n_, k_] := T[n, k] = If[n <= k, n!, n*T[n-1, k] - FactorialPower[n-1, k]* T[n-k-1, k]];
Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Apr 28 2020 *)
-
T4(n, k)=if(k<1 || k>n, 0, n!/(n-k)!); \\ A068424
T(n,k) = if (n<=k, n!, n*T(n-1,k) - T4(n-1,k)*T(n-k-1,k));
tabl(nn) = for (n=1, nn, for (k=1, n, print1(T(n,k), ", ")); print); \\ Michel Marcus, May 09 2020
A355293
Expansion of e.g.f. 1 / (1 - x - x^2/2 - x^3/3).
Original entry on oeis.org
1, 1, 3, 14, 82, 610, 5450, 56700, 674520, 9027480, 134236200, 2195701200, 39180094800, 757389032400, 15767305554000, 351689317980000, 8367381470448000, 211518767796336000, 5661504152255952000, 159954273475764768000, 4757034049019572320000, 148547713504322452320000, 4859583724723970642400000
Offset: 0
-
nmax = 22; CoefficientList[Series[1/(1 - x - x^2/2 - x^3/3), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = a[1] = 1; a[2] = 3; a[n_] := a[n] = n a[n - 1] + n (n - 1) a[n - 2]/2 + n (n - 1) (n - 2) a[n - 3]/3; Table[a[n], {n, 0, 22}]
A186526
Number T(n,k) of permutations on n elements with exactly k 3-cycles; triangle read by rows.
Original entry on oeis.org
1, 1, 2, 4, 2, 16, 8, 80, 40, 520, 160, 40, 3640, 1120, 280, 29120, 8960, 2240, 259840, 87360, 13440, 2240, 2598400, 873600, 134400, 22400, 28582400, 9609600, 1478400, 246400, 343235200, 114329600, 19219200, 1971200, 246400, 4462057600, 1486284800, 249849600, 25625600, 3203200, 62468806400, 20807987200, 3497894400, 358758400, 44844800, 936987251200, 312344032000, 52019968000, 5829824000, 448448000, 44844800
Offset: 0
For n=4 and k=1, T(4,1)=8 since there are 8 permutations on 4 elements with 1 cycle of length 3, namely, (abc)(d), (acb)(d), (abd)(c), (adb)(c), (acd)(b), (adc)(b), (bcd)(a), and (bdc)(a).
Triangle T(n,k) begins:
: 1;
: 1;
: 2;
: 4, 2;
: 16, 8;
: 80, 40;
: 520, 160, 40;
: 3640, 1120, 280;
: 29120, 8960, 2240;
: ...
- Arratia, R. and Tavaré, S. (1992). The cycle structure of random permutations. Ann. Probab. 20 1567-1591.
-
seq(seq(n!*(1/3)^x/x!*sum((-1/3)^j/j!,j=0..(floor(n/3)-x)),x=0..floor(n/3)),n=0..15);
# second Maple program:
b:= proc(n) option remember; expand(`if`(n=0, 1, add(b(n-i)*
`if`(i=3, x, 1)*binomial(n-1, i-1)*(i-1)!, i=1..n)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n)):
seq(T(n), n=0..15); # Alois P. Heinz, Sep 25 2016
-
nn = 8; Range[0, nn]! CoefficientList[
Series[Exp[x^3/3 (y - 1)]/(1 - x), {x, 0, nn}], {x, y}] // Grid
Showing 1-10 of 12 results.
Comments