cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A028418 Sum over all n! permutations of n letters of maximum cycle length.

Original entry on oeis.org

1, 3, 13, 67, 411, 2911, 23563, 213543, 2149927, 23759791, 286370151, 3734929903, 52455166063, 788704078527, 12648867695311, 215433088624351, 3884791172487903, 73919882720901823, 1480542628345939807, 31128584449987511871, 685635398619169059391
Offset: 1

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

Sum the n-permutations having at least 1 cycle of length >= i for all i >= 1. A000142 + A033312 + A066052 + A202364 + ... The summation is precisely that indicated in the title since each permutation whose longest cycle = i is counted i times. - Geoffrey Critzer, Jan 09 2013

References

  • S. W. Golomb, Shift-Register Sequences, Holden-Day, San Francisco, 1967, p. 183.
  • R. Sedgewick and P. Flajolet, Analysis of Algorithms, Addison Wesley, 1996, page 358.

Crossrefs

Column k=1 of A322384.

Programs

  • Maple
    b:= proc(n, m) option remember; `if`(n=0, m, add((j-1)!*
          b(n-j, max(m,j))*binomial(n-1, j-1), j=1..n))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=1..25);  # Alois P. Heinz, May 14 2016
  • Mathematica
    kmax = 19; gf[x_] = Sum[ 1/(1-x) - 1/(E^((x^(1+k)*Hypergeometric2F1[1+k, 1, 2+k, x])/ (1+k))*(1-x)), {k, 0, kmax}];
    a[n_] := n!*Coefficient[Series[gf[x], {x, 0, kmax}], x^n]; Array[a, kmax]
    (* Jean-François Alcover, Jun 22 2011, after e.g.f. *)
    a[ n_] := If[ n < 1, 0, 1 + Total @ Apply[ Max, Map[ Length, First /@ PermutationCycles /@ Drop[ Permutations @ Range @ n, 1], {2}], 1]]; (* Michael Somos, Aug 19 2018 *)

Formula

E.g.f.: Sum_{k>=0} (1/(1-x) - exp(Sum_{j=1..k} x^j/j)).
a(n) = f(n, 0, n, n!) where f(L, r, n, m) = m*r if r >= l, otherwise Sum_{k=0..L-1} (f(k, max(L-k,r), n-1, m/n) + (n-L)*f(L, r, n-1, m/n)). - Thomas Dybdahl Ahle, Aug 15 2011
a(n) = Sum_{k=1..n} k * A126074(n,k). - Alois P. Heinz, May 17 2016

Extensions

More terms from Vladeta Jovovic, Sep 19 2002
More terms from Thomas Dybdahl Ahle, Aug 15 2011
Showing 1-1 of 1 results.