A070999 Numbers n such that the denominator of Sum_{k=1..n} 1/gcd(n,k) is not equal to n.
6, 15, 18, 21, 30, 33, 35, 42, 44, 45, 48, 51, 54, 60, 66, 69, 70, 78, 84, 87, 90, 99, 102, 105, 114, 119, 120, 123, 126, 132, 133, 135, 138, 140, 141, 144, 147, 150, 153, 159, 162, 165, 168, 174, 177, 180, 186, 195, 198, 204, 207, 210, 213, 217, 220, 221, 222
Offset: 1
Examples
Sum_{k=1..6} 1/gcd(6,k) = 7/2, hence 6 is in the sequence; Sum_{k=1..12} 1/gcd(12,k) = 77/12 so 12 is not in the sequence.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range[300],Denominator[Sum[1/GCD[#,k],{k,#}]]!=#&] (* Harvey P. Dale, May 07 2022 *) f[p_, e_] := (p^(2*e + 1) + 1)/(p + 1); s[n_] := Times @@ (f @@@ FactorInteger[n]); Select[Range[250], !CoprimeQ[#, s[#]] &] (* Amiram Eldar, Jun 29 2022 *)
-
PARI
for(n=1,300,if(denominator(sum(i=1,n,1/gcd(n,i)))
Comments