cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071036 Triangle read by rows giving successive states of cellular automaton generated by "Rule 150" when started with a single ON cell.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1
Offset: 0

Views

Author

Hans Havermann, May 26 2002

Keywords

Comments

Row n has length 2n+1.
Also the coefficients of (x^2 + x + 1)^n mod 2. - Alan DenAdel, Mar 19 2014
The number of 0's in row n is A071052(n), and the number of 1's in row n is A071053(n). - Michael Somos, Jun 24 2018

Examples

			Triangle begins:
               1;
            1, 1, 1;
         1, 0, 1, 0, 1;
      1, 1, 0, 1, 0, 1, 1;
   1, 0, 0, 0, 1, 0, 0, 0, 1;
1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1;
... - _Michel Marcus_, Mar 20 2014
		

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; Chapter 3.

Crossrefs

This sequence, A038184 and A118110 are equivalent descriptions of the Rule 150 automaton.

Programs

  • Mathematica
    T[ n_, k_] := T[n, k] = Which[k < 0 || k > 2 n, 0, n == k == 0, 1, True, Mod[ T[n - 1, k - 2] + T[n - 1, k - 1] + T[n - 1, k], 2]]; (* Michael Somos, Jun 24 2018 *)
  • PARI
    rown(n) = Vec(lift((x^2 + x + 1)^n * Mod(1, 2))); \\ Michel Marcus, Mar 20 2014

Formula

a(n) = A027907(n) modulo 2. - Michel Marcus, Mar 20 2014

Extensions

Corrected by Hans Havermann, Jan 08 2012