A071036 Triangle read by rows giving successive states of cellular automaton generated by "Rule 150" when started with a single ON cell.
1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1
Offset: 0
Examples
Triangle begins: 1; 1, 1, 1; 1, 0, 1, 0, 1; 1, 1, 0, 1, 0, 1, 1; 1, 0, 0, 0, 1, 0, 0, 0, 1; 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1; ... - _Michel Marcus_, Mar 20 2014
References
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; Chapter 3.
Links
- Robert Price, Table of n, a(n) for n = 0..9999
- Rémy Sigrist, Representation of the first 2^10 rows of the table
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
- S. Wolfram, A New Kind of Science
- Index to Elementary Cellular Automata
- Index entries for sequences related to cellular automata
Crossrefs
Programs
-
Mathematica
T[ n_, k_] := T[n, k] = Which[k < 0 || k > 2 n, 0, n == k == 0, 1, True, Mod[ T[n - 1, k - 2] + T[n - 1, k - 1] + T[n - 1, k], 2]]; (* Michael Somos, Jun 24 2018 *)
-
PARI
rown(n) = Vec(lift((x^2 + x + 1)^n * Mod(1, 2))); \\ Michel Marcus, Mar 20 2014
Formula
a(n) = A027907(n) modulo 2. - Michel Marcus, Mar 20 2014
Extensions
Corrected by Hans Havermann, Jan 08 2012
Comments