A119612 Number of integers of the form (nk)^3/(n^3+k^3), k>=1.
0, 1, 1, 1, 0, 3, 0, 1, 1, 1, 0, 3, 0, 2, 1, 1, 0, 3, 0, 1, 1, 1, 0, 3, 0, 1, 1, 2, 0, 3, 0, 1, 1, 1, 0, 3, 0, 1, 1, 1, 0, 6, 0, 1, 1, 1, 0, 3, 0, 1, 1, 1, 0, 3, 0, 2, 2, 1, 0, 3, 0, 1, 1, 1, 1, 3, 0, 1, 1, 4, 0, 3, 0, 1, 1, 1, 0, 5, 0, 1, 1, 1, 0, 7, 0, 2, 1, 1, 0, 3, 0, 1, 1, 1, 0, 3, 0, 2, 1, 1, 0, 3, 0, 1, 3
Offset: 1
Examples
a(6) = 3 as there are the following three solutions: (1) n=6, k=3: (6^3 * 3^3) / (6^3 + 3^3) = 5832/243 = 24, (2) n=6, k=6: ? (6^3 * 6^3) / (6^3 + 6^3) = 46656/432 = 108, and (3) n=6, k=12: (6^3 * 12^3) / (6^3 + 12^3) = 373248/1944 = 192. a(14) = 2 as there are two solutions, (1) n=14, k=14: (14^3 * 14^3) / (14^3 + 14^3) = 14^6 / (2 * 14^3) = 1372 and (2) n=14, k=42: (14^3 * 42^3)/(14^3 + 42^3)= (2744 * 74088)/(2744 + 74088) = 203297472 / 76832 = 2646.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
- Robert Israel, Proof of the latter comment (which applies to A119612, A379953 and A379954)
Crossrefs
Programs
-
PARI
A119612(n) = sum(k=1, n^2, !(((n*k)^3)%(k^3+n^3))); \\ (after PARI-code in A071086) - Antti Karttunen, Jan 16 2025
Extensions
Corrected offset (from 0 to 1), terms a(70) (from 3 to 4) and a(78) (from 4 to 5), and extended the data section to 105 terms - Antti Karttunen, Jan 16 2025
Comments