cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071095 Number of ways to tile hexagon of edges n, n+1, n+1, n, n+1, n+1 with diamonds of side 1.

Original entry on oeis.org

1, 6, 175, 24696, 16818516, 55197331332, 872299918503728, 66345156372852988800, 24277282058281388285162560, 42730166102274086598901662210000, 361690697335823816369045433734882109375, 14721491647169381835282394824891766183125000000, 2880942480871157389699990094736740229925045312500000000
Offset: 0

Views

Author

N. J. A. Sloane, May 28 2002

Keywords

References

  • J. Propp, Enumeration of matchings: problems and progress, pp. 255-291 in L. J. Billera et al., eds, New Perspectives in Algebraic Combinatorics, Cambridge, 1999 (see page 261).

Crossrefs

Programs

  • Mathematica
    Table[Product[(i+j+k+2)/(i+j+k+1),{i,0,n-1},{j,0,n},{k,0,n}],{n,0,15}] (* Vaclav Kotesovec, Apr 26 2015 *)
  • PARI
    a(n) = prod(i=0, n-1, prod(j=0, n, prod(k=0, n, (i+j+k+2)/(i+j+k+1)))) \\ Michel Marcus, May 20 2013

Formula

a(n) = Product_{i=0..a-1} Product_{j=0..b-1} Product_{k=0..c-1} (i+j+k+2)/(i+j+k+1) with a=n, b=c=n+1.
a(n) ~ exp(1/12) * 3^(9*n^2/2 + 6*n + 23/12) / (A * n^(1/12) * 2^(6*n^2 + 8*n + 11/4)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Apr 26 2015
a(n) = (-1)^floor(n/2)*det(M(n)) where M(n) is the n X n matrix with m(i,j) = binomial(2*n+i+j,i+j). - Benoit Cloitre, Oct 22 2022