cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071188 Largest prime factor of number of divisors of n; a(1)=1.

Original entry on oeis.org

1, 2, 2, 3, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 5, 2, 3, 2, 3, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 5, 3, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 7, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 5, 5, 2, 2, 3, 2, 2, 2, 2, 2, 3
Offset: 1

Views

Author

Reinhard Zumkeller, May 15 2002

Keywords

Comments

From Robert Israel, Dec 04 2016: (Start)
a(n)=2 if and only if every member of the prime signature of n is of the form 2^k-1.
a(m*k) = max(a(m),a(k)) if m and k are coprime. (End)

Crossrefs

Programs

  • Haskell
    a071188 = a006530 . a000005  -- Reinhard Zumkeller, Sep 04 2013
    
  • Maple
    f:= n -> max(1, numtheory:-factorset(numtheory:-tau(n))):
    map(f, [$1..100]); # Robert Israel, Dec 04 2016
  • Mathematica
    Max[Transpose[FactorInteger[#]][[1]]]&/@DivisorSigma[0,Range[100]] (* Harvey P. Dale, Aug 28 2013 *)
  • PARI
    a(n) = if(n == 1, 1, vecmax(factor(numdiv(n))[, 1])); \\ Michel Marcus, Dec 05 2016

Formula

a(n) = A006530(A000005(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*d(1) + Sum_{k>=2} prime(k)*(d(k) - d(k-1)) = 2.4365518864..., where d(1) = A327839, and for k >= 2, d(k) is the asymptotic density of numbers whose number of divisors is a prime(k)-smooth number, i.e., d(k) = Product_{p prime} ((1 - 1/p) * Sum_{i, A006530(i) <= prime(k)} 1/p^(i-1)) (see A354181 for an example). - Amiram Eldar, Jan 15 2024