cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071244 a(n) = n*(n-1)*(n^2 + 2)/6.

Original entry on oeis.org

0, 0, 2, 11, 36, 90, 190, 357, 616, 996, 1530, 2255, 3212, 4446, 6006, 7945, 10320, 13192, 16626, 20691, 25460, 31010, 37422, 44781, 53176, 62700, 73450, 85527, 99036, 114086, 130790, 149265, 169632, 192016, 216546, 243355, 272580, 304362, 338846, 376181
Offset: 0

Views

Author

N. J. A. Sloane, Jun 12 2002

Keywords

References

  • T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.

Crossrefs

Cf. A071239.

Programs

  • Magma
    [n*(n-1)*(n^2+2)/6: n in [0..40]]; // Vincenzo Librandi, Jun 14 2011
    
  • Mathematica
    Table[n(n-1)(n^2+2)/6,{n,0,50}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{0,0,2,11,36},50] (* Harvey P. Dale, Nov 27 2022 *)
  • PARI
    a(n)=n*(n-1)*(n^2+2)/6; \\ Joerg Arndt, Sep 04 2013
    
  • SageMath
    def A071244(n): return binomial(n,2)*(n^2+2)//3
    [A071244(n) for n in range(41)] # G. C. Greubel, Aug 06 2024

Formula

a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5), n > 4, a(0)=0, a(1)=0, a(2)=2, a(3)=11, a(4)=36. - Yosu Yurramendi, Sep 03 2013
From G. C. Greubel, Aug 06 2024: (Start)
G.f.: x^2*(2 + x + x^2)/(1 - x)^5.
E.g.f.: (1/6)*x^2*(6 + 5*x + x^2)*exp(x). (End)