A071291 Second term of the continued fraction expansion of (3/2)^n; or 0 if no term is present.
0, 0, 1, 0, 1, 1, 1, 1, 3, 1, 101, 2, 1, 13, 8, 5, 1, 8, 5, 1, 7, 4, 2, 1, 1, 3, 1, 2, 3, 1, 1, 7, 4, 2, 1, 2, 1, 11, 7, 8, 12, 2, 1, 6, 4, 30, 19, 2, 129, 1, 8, 13, 2, 5, 1, 7, 5, 32, 21, 13, 1, 14, 1, 8, 1, 4, 2, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 18, 2, 1, 20, 3, 1, 2, 1, 1, 12, 1, 1, 1, 2, 1, 1, 2, 1
Offset: 1
Examples
a(9) = 3 since floor(1/frac(1/frac(3^9/2^9))) = floor(1/frac(1/.443359375)) = 3.
References
- S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 192-199.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Steven R. Finch, Powers of 3/2 Modulo One [From Steven Finch, Apr 20 2019]
- Steven R. Finch, Non-Ideal Waring's Problem [From Steven Finch, Apr 20 2019]
- Jeff Lagarias, 3x+1 Problem
- C. Pisot, La répartition modulo 1 et les nombres algébriques, Ann. Scuola Norm. Sup. Pisa, 7 (1938), 205-248.
- T. Vijayaraghavan, On the fractional parts of the powers of a number (I), J. London Math. Soc. 15 (1940) 159-160.
Programs
-
Mathematica
a[n_] := If[FractionalPart[1/FractionalPart[(3/2)^n]] > 0, Floor[1/FractionalPart[1/FractionalPart[(3/2)^n]]], 0]; Table[a[n], {n, 1, 100}] (* G. C. Greubel, Apr 18 2017 *)
-
PARI
a(n) = {cf = contfrac((3/2)^n); if (#cf < 3, return (0), return (cf[3]));} \\Michel Marcus, Aug 01 2013
Formula
a(n) = floor(1/frac(1/frac((3/2)^n))) when frac(1/frac((3/2)^n)) > 0; a(n) = 0 otherwise.
Comments