cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071295 Product of numbers of 0's and 1's in binary representation of n.

Original entry on oeis.org

0, 0, 1, 0, 2, 2, 2, 0, 3, 4, 4, 3, 4, 3, 3, 0, 4, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 4, 6, 4, 4, 0, 5, 8, 8, 9, 8, 9, 9, 8, 8, 9, 9, 8, 9, 8, 8, 5, 8, 9, 9, 8, 9, 8, 8, 5, 9, 8, 8, 5, 8, 5, 5, 0, 6, 10, 10, 12, 10, 12, 12, 12, 10, 12, 12, 12, 12, 12, 12, 10, 10, 12, 12, 12, 12, 12, 12, 10, 12, 12, 12
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 20 2002

Keywords

Comments

a(n) = A023416(n)*A000120(n);
a(1)=0, a(2*n)=(A023416(n)+1)*A000120(n), a(2*n+1)=(A000120(n)+1)*A023416(n);
a(n) = 0 iff n=2^k-1 for some k.
a(A059011(n)) mod 2 = 1. - Reinhard Zumkeller, Aug 09 2014

Examples

			a(14)=3 because 14 is 1110 in binary and has 3 ones and 1 zero.
		

Crossrefs

Programs

  • Haskell
    a071295 n = a000120 n * a023416 n  -- Reinhard Zumkeller, Aug 09 2014
    
  • Mathematica
    f[n_] := Block[{s = IntegerDigits[n, 2]}, Count[s, 0] Count[s, 1]]; Table[ f[n], {n, 0, 90}]
    Table[DigitCount[n,2,1]DigitCount[n,2,0],{n,0,100}] (* Harvey P. Dale, Sep 19 2019 *)
  • Python
    def A071295(n):
        return bin(n)[1:].count('0')*bin(n).count('1') # Chai Wah Wu, Dec 23 2019

Formula

a(n) = a(floor(n/2)) + (1 - n mod 2) * A000120(floor(n/2)) + (n mod 2)*A023416(floor(n/2)).

Extensions

Edited by N. J. A. Sloane and Robert G. Wilson v, Oct 11 2002