cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A060215 Least a(n) such that the period of continued fraction for sqrt(a(n)) has at least n successive 1's.

Original entry on oeis.org

2, 3, 7, 7, 13, 58, 58, 135, 461, 819, 2081, 13624, 13834, 35955, 95773, 244647, 639389, 1798800, 4374866, 11448871, 30002701, 78439683, 205337953, 541653136, 1407271538
Offset: 0

Views

Author

Jeff Burch, Mar 21 2001

Keywords

Comments

a(25) <= 3684200835. - Chai Wah Wu, Jul 20 2024

Examples

			n  a(n)      C.f. period
0  2          1    2
1  3          2    1,2
2  7          4    1,1,1,4
3  7          4    1,1,1,4
4  13         5    1,1,1,1,6
5  58         7    1,1,1,1,1,1,14
6  58         7    1,1,1,1,1,1,14
7  135        8    1,1,1,1,1,1,1,22
8  461        15   2,8,10,1,1,1,1,1,1,1,1,10,8,2,42
9  819        10   1,1,1,1,1,1,1,1,1,56
10 2081       11   1,1,1,1,1,1,1,1,1,1,90
11 13624      62   1,2,1,...,4,5,1,1,1,1,1,1,1,1,1,1,1,5,4,...,1,2,1,232
12 13834      13   1,1,1,1,1,1,1,1,1,1,1,1,234
13 35955      14   1,1,1,1,1,1,1,1,1,1,1,1,1,378
14 95773      25   2,8,2,8,154,1,1,1,1,1,1,1,1,1,1,1,1,1,1,154,8,2,8,2,618
15 244647     16   1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,988
16 639389     17   1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1598
17 1798800    160  5,5,1,19,...,2,60,(17 1's),60,2,...,19,1,5,5,2682
18 4374866    19   1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,4182
19 11448871   20   1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6766
20 30002701   35   2,8,2,8,2,8,2738,(20 1's),738,8,2,8,2,8,2,10954
21 78439683   22   1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,17712
22 205337953  23   1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,28658
23 541653136  1442 2,3,1,...,4,581,(23 1's),581,4,...,1,3,2,46546
24 1407271538 25   1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,75026
		

Crossrefs

Cf. A071296.

Programs

  • Mathematica
    Table[Block[{k = 2}, While[NoneTrue[Map[Length, Select[If[IntegerQ@ #, {{#}}, Split@ Last@ ContinuedFraction@ #] &@ Sqrt@ k, First@ # == 1 &]], # >= n &], k++]; k], {n, 14}] (* Michael De Vlieger, Oct 26 2017 *)
  • PARI
    print1("2, 3, 7, ");n=3;for(k=1,10^6,v=contfrac(sqrt(k));s=0; for(l=1,length(v)-n,if(v[l]==1,s=s+1,s=0);if(s==n,print1(k", ");n=n+1;k=k-1;break)))

Extensions

More terms from Ralf Stephan, Mar 26 2003
Definition clarified by T. D. Noe, Apr 07 2014
a(11), a(14) corrected and a(17)-a(23) added by Lars Blomberg, Oct 24 2015
a(0), a(24) from Chai Wah Wu, Sep 23 2019

A309666 a(n) is the least k such that the denominators of continued fraction convergents for sqrt(k) match the first n Fibonacci numbers.

Original entry on oeis.org

2, 3, 7, 7, 13, 58, 58, 135, 819, 819, 2081, 13834, 13834, 35955, 244647, 244647, 639389, 4374866, 4374866, 11448871, 78439683, 78439683, 205337953, 1407271538, 1407271538, 3684200835, 25251313255, 25251313255, 66108441037, 453111560266, 453111560266, 1186259960295, 8130736409715, 8130736409715, 21286537898177
Offset: 1

Views

Author

Greg Dresden, Aug 11 2019

Keywords

Comments

Aside from the first term, this appears to be a subset of A060215.
Same as A071296 if you drop a(0) and replace each repeated pair x,x with 0,x (credit to Daniel Suteu for pointing this out).
These are also the least a(n) such that the continued fraction expansion for sqrt(a(n) - floor(a(n))) begins with (n-1) 1's.

Examples

			For n = 5 the convergents of sqrt(13) are 3/1, 4/1, 7/2, 11/3, 18/5, 119/33, ... and the first five denominators are 1, 1, 2, 3, 5, which match the first five Fibonacci numbers. Since 13 is the first number with this property, then a(5) = 13.
		

Crossrefs

Programs

  • Mathematica
    c = 1;
    n = 2;
    F = Table[Fibonacci[n], {n, 20}];
    While[c <= 14,
    If[! IntegerQ[Sqrt[n]]
       &&
       Denominator[Convergents[Sqrt[n], c]] == F[[1 ;; c]],
      Print[n, "  ", Denominator[Convergents[Sqrt[n], c]]];
      c++; n--];
    n++
    ]

Formula

Conjectures from Colin Barker, Aug 26 2019: (Start)
G.f.: x*(2 + x + 4*x^2 - 42*x^3 - 15*x^4 - 39*x^5 + 100*x^6 + x^7 - 61*x^8 + 172*x^9 + 31*x^10 - 17*x^11 + 26*x^12 - 2*x^13 + x^14 - 2*x^15) / ((1 - x)*(1 + x)*(1 - 3*x + x^2)*(1 - x + x^2)*(1 - x - x^2)*(1 + x + 2*x^2 - x^3 + x^4)*(1 + 3*x + 8*x^2 + 3*x^3 + x^4)).
a(n) = a(n-1) + 21*a(n-3) - 21*a(n-4) - 50*a(n-6) + 50*a(n-7) - 86*a(n-9) + 86*a(n-10) - 13*a(n-12) + 13*a(n-13) + a(n-15) - a(n-16) for n>16.
(End)
Showing 1-2 of 2 results.