cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A071296 a(n) is the least m such that a period of the continued fraction expansion of sqrt(m) is 1,1,1,...,1,1,1,Z and there are n ones in the period (Z is 2*floor(sqrt(m))). If no such m exists, a(n) = 0.

Original entry on oeis.org

3, 0, 7, 13, 0, 58, 135, 0, 819, 2081, 0, 13834, 35955, 0, 244647, 639389, 0, 4374866, 11448871, 0, 78439683, 205337953, 0, 1407271538, 3684200835, 0, 25251313255, 66108441037, 0, 453111560266, 1186259960295, 0, 8130736409715, 21286537898177, 0
Offset: 1

Views

Author

Lekraj Beedassy, Jun 11 2002

Keywords

Examples

			a(3) = 7 because sqrt(7)'s continued fraction is [2;1,1,1,4,...]; the period has 3 ones (and only one other number).
		

Crossrefs

Programs

  • Mathematica
    Table[If[Mod[n, 3] == 2, 0, x = (Fibonacci[n + 1] + 1)/2; x^2 + (Fibonacci[n - 1] + 2*x*Fibonacci[n])/Fibonacci[n + 1]], {n, 50}] (* T. D. Noe, Apr 07 2014 *)
  • Python
    from gmpy2 import fib2
    def A071296(n):
        if n%3==2: return 0
        f, g = fib2(n)
        return int(f*(f + (g<<1) + 6) + g*(g + 2) + 5>>2) # Chai Wah Wu, Mar 21 2023

Formula

Let F(n) = n-th Fibonacci number (A000045). If n == 2 mod 3 then F(n+1) is even and there's no such m. Otherwise, let x = (F(n+1) + 1) / 2. Then a(n) = x^2 + (F(n-1) + 2*x*F(n))/F(n+1).

Extensions

Edited by Don Reble, Jun 06 2003

A309666 a(n) is the least k such that the denominators of continued fraction convergents for sqrt(k) match the first n Fibonacci numbers.

Original entry on oeis.org

2, 3, 7, 7, 13, 58, 58, 135, 819, 819, 2081, 13834, 13834, 35955, 244647, 244647, 639389, 4374866, 4374866, 11448871, 78439683, 78439683, 205337953, 1407271538, 1407271538, 3684200835, 25251313255, 25251313255, 66108441037, 453111560266, 453111560266, 1186259960295, 8130736409715, 8130736409715, 21286537898177
Offset: 1

Views

Author

Greg Dresden, Aug 11 2019

Keywords

Comments

Aside from the first term, this appears to be a subset of A060215.
Same as A071296 if you drop a(0) and replace each repeated pair x,x with 0,x (credit to Daniel Suteu for pointing this out).
These are also the least a(n) such that the continued fraction expansion for sqrt(a(n) - floor(a(n))) begins with (n-1) 1's.

Examples

			For n = 5 the convergents of sqrt(13) are 3/1, 4/1, 7/2, 11/3, 18/5, 119/33, ... and the first five denominators are 1, 1, 2, 3, 5, which match the first five Fibonacci numbers. Since 13 is the first number with this property, then a(5) = 13.
		

Crossrefs

Programs

  • Mathematica
    c = 1;
    n = 2;
    F = Table[Fibonacci[n], {n, 20}];
    While[c <= 14,
    If[! IntegerQ[Sqrt[n]]
       &&
       Denominator[Convergents[Sqrt[n], c]] == F[[1 ;; c]],
      Print[n, "  ", Denominator[Convergents[Sqrt[n], c]]];
      c++; n--];
    n++
    ]

Formula

Conjectures from Colin Barker, Aug 26 2019: (Start)
G.f.: x*(2 + x + 4*x^2 - 42*x^3 - 15*x^4 - 39*x^5 + 100*x^6 + x^7 - 61*x^8 + 172*x^9 + 31*x^10 - 17*x^11 + 26*x^12 - 2*x^13 + x^14 - 2*x^15) / ((1 - x)*(1 + x)*(1 - 3*x + x^2)*(1 - x + x^2)*(1 - x - x^2)*(1 + x + 2*x^2 - x^3 + x^4)*(1 + 3*x + 8*x^2 + 3*x^3 + x^4)).
a(n) = a(n-1) + 21*a(n-3) - 21*a(n-4) - 50*a(n-6) + 50*a(n-7) - 86*a(n-9) + 86*a(n-10) - 13*a(n-12) + 13*a(n-13) + a(n-15) - a(n-16) for n>16.
(End)
Showing 1-2 of 2 results.